Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroaki Hiramatsu is active.

Publication


Featured researches published by Hiroaki Hiramatsu.


Journal of Virology | 2007

An Avian Influenza H5N1 Virus That Binds to a Human-Type Receptor

Prasert Auewarakul; Ornpreya Suptawiwat; Alita Kongchanagul; Chak Sangma; Yasuo Suzuki; Kumnuan Ungchusak; Suda Louisirirotchanakul; Hatairat Lerdsamran; Phisanu Pooruk; Arunee Thitithanyanont; Chakrarat Pittayawonganon; Chao-Tan Guo; Hiroaki Hiramatsu; Wipawee Jampangern; Supamit Chunsutthiwat; Pilaipan Puthavathana

ABSTRACT Avian influenza viruses preferentially recognize sialosugar chains terminating in sialic acid-α2,3-galactose (SAα2,3Gal), whereas human influenza viruses preferentially recognize SAα2,6Gal. A conversion to SAα2,6Gal specificity is believed to be one of the changes required for the introduction of new hemagglutinin (HA) subtypes to the human population, which can lead to pandemics. Avian influenza H5N1 virus is a major threat for the emergence of a pandemic virus. As of 12 June 2007, the virus has been reported in 45 countries, and 312 human cases with 190 deaths have been confirmed. We describe here substitutions at position 129 and 134 identified in a virus isolated from a fatal human case that could change the receptor-binding preference of HA of H5N1 virus from SAα2,3Gal to both SAα2,3Gal and SAα2,6Gal. Molecular modeling demonstrated that the mutation may stabilize SAα2,6Gal in its optimal cis conformation in the binding pocket. The mutation was found in approximately half of the viral sequences directly amplified from a respiratory specimen of the patient. Our data confirm the presence of H5N1 virus with the ability to bind to a human-type receptor in this patient and suggest the selection and expansion of the mutant with human-type receptor specificity in the human host environment.


PLOS Pathogens | 2011

Acquisition of Human-Type Receptor Binding Specificity by New H5N1 Influenza Virus Sublineages during Their Emergence in Birds in Egypt

Yohei Watanabe; Madiha S. Ibrahim; Hany F. Ellakany; Norihito Kawashita; Rika Mizuike; Hiroaki Hiramatsu; Nogluk Sriwilaijaroen; Tatsuya Takagi; Yasuo Suzuki; Kazuyoshi Ikuta

Highly pathogenic avian influenza A virus subtype H5N1 is currently widespread in Asia, Europe, and Africa, with 60% mortality in humans. In particular, since 2009 Egypt has unexpectedly had the highest number of human cases of H5N1 virus infection, with more than 50% of the cases worldwide, but the basis for this high incidence has not been elucidated. A change in receptor binding affinity of the viral hemagglutinin (HA) from α2,3- to α2,6-linked sialic acid (SA) is thought to be necessary for H5N1 virus to become pandemic. In this study, we conducted a phylogenetic analysis of H5N1 viruses isolated between 2006 and 2009 in Egypt. The phylogenetic results showed that recent human isolates clustered disproportionally into several new H5 sublineages suggesting that their HAs have changed their receptor specificity. Using reverse genetics, we found that these H5 sublineages have acquired an enhanced binding affinity for α2,6 SA in combination with residual affinity for α2,3 SA, and identified the amino acid mutations that produced this new receptor specificity. Recombinant H5N1 viruses with a single mutation at HA residue 192 or a double mutation at HA residues 129 and 151 had increased attachment to and infectivity in the human lower respiratory tract but not in the larynx. These findings correlated with enhanced virulence of the mutant viruses in mice. Interestingly, these H5 viruses, with increased affinity to α2,6 SA, emerged during viral diversification in bird populations and subsequently spread to humans. Our findings suggested that emergence of new H5 sublineages with α2,6 SA specificity caused a subsequent increase in human H5N1 influenza virus infections in Egypt, and provided data for understanding the viruss pandemic potential.


Journal of General Virology | 2010

Emergence of H5N1 avian influenza viruses with reduced sensitivity to neuraminidase inhibitors and novel reassortants in Lao People's Democratic Republic

David A. Boltz; Bounlom Douangngeun; Phouvong Phommachanh; Settha Sinthasak; Ricarda Mondry; Caroline Obert; Patrick Seiler; Rachael Keating; Yasuo Suzuki; Hiroaki Hiramatsu; Elena A. Govorkova; Robert G. Webster

Pandemic influenza viruses can emerge through continuous evolution and the acquisition of specific mutations or through reassortment. This study assessed the pandemic potential of H5N1 viruses isolated from poultry outbreaks occurring from July 2006 to September 2008 in the Lao Peoples Democratic Republic (PDR). We analyzed 29 viruses isolated from chickens and ducks and two from fatal human cases in 2007. Prior to 2008, all H5N1 isolates in Lao PDR were from clade 2.3.4; however, clade 2.3.2 was introduced in September 2008. Of greatest concern was the circulation of three isolates that showed reduced sensitivity to the neuraminidase (NA) inhibitor oseltamivir in an enzyme inhibition assay, each with different NA mutations - V116A, I222L and K150N, and a previously unreported S246N mutation. In addition, six isolates had an S31N mutation in the M2 protein, which conferred resistance to amantadine not previously reported in clade 2.3.4 viruses. Two H5N1 reassortants were isolated whose polymerase genes, PB1 and PB2, were homologous to those of Eurasian viruses giving rise to a novel H5N1 genotype, genotype P. All H5N1 viruses retained avian-like receptor specificity, but four had altered affinities for alpha2,3-linked sialic acid. This study shows that, in a genetically similar population of H5N1 viruses in Lao PDR, mutants emerged with natural resistance to antivirals and altered affinities for alpha2,3-linked sialic acids, together with reassortants with polymerase genes homologous to Eurasian viruses. These changes may contribute to the emergence of a pandemic influenza strain and are critical in devising surveillance strategies.


Journal of Virology | 2014

Antigenic and receptor binding properties of Enterovirus 68

Tadatsugu Imamura; Michiko Okamoto; Shin-ichi Nakakita; Akira Suzuki; Mariko Saito; Raita Tamaki; Socorro Lupisan; Chandra Nath Roy; Hiroaki Hiramatsu; Kanetsu Sugawara; Katsumi Mizuta; Yoko Matsuzaki; Yasuo Suzuki; Hitoshi Oshitani

ABSTRACT Increased detection of enterovirus 68 (EV68) among patients with acute respiratory infections has been reported from different parts of the world in the late 2000s since its first detection in pediatric patients with lower-respiratory-tract infections in 1962. However, the underlying molecular mechanisms for this trend are still unknown. We therefore aimed to study the antigenicity and receptor binding properties of EV68 detected in recent years in comparison to the prototype strain of EV68, the Fermon strain. We first performed neutralization (NT) and hemagglutination inhibition (HI) tests using antisera generated for EV68 strains detected in recent years. We found that the Fermon strain had lower HI and NT titers than recently detected EV68 strains. The HI and NT titers were also significantly different between strains of different genetic lineages among recently detected EV68 strains. We further studied receptor binding specificities of EV68 strains for sialyloligosaccharides using glycan array analysis. In glycan array analysis, all tested EV68 strains showed affinity for α2-6-linked sialic acids (α2-6 SAs) compared to α2-3 SAs. Our study demonstrates that emergence of strains with different antigenicity is the possible reason for the increased detection of EV68 in recent years. Additionally, we found that EV68 preferably binds to α2-6 SAs, which suggests that EV68 might have affinity for the upper respiratory tract. IMPORTANCE Numbers of cases of enterovirus 68 (EV68) infection in different parts of the world increased significantly in the late 2000s. We studied the antigenicity and receptor binding properties of recently detected EV68 strains in comparison to the prototype strain of EV68, Fermon. The hemagglutination inhibition (HI) and neutralization (NT) titers were significantly different between strains of different genetic lineages among recently detected EV68 strains. We further studied receptor binding specificities of EV68 strains for sialyloligosaccharides using glycan array analysis, which showed affinity for α2-6-linked sialic acids (α2-6 SAs) compared to α2-3 SAs. Our study suggested that the emergence of strains with different antigenicities was the possible reason for the increased detections of EV68 in recent years. Additionally, we revealed that EV68 preferably binds to α2-6 SAs. This is the first report describing the properties of EV68 receptor binding to the specific types of sialic acids.


Journal of Virology | 2014

H6 influenza viruses pose a potential threat to human health

Guojun Wang; Guohua Deng; Jianzhong Shi; Weiyu Luo; Guoquan Zhang; Qianyi Zhang; Liling Liu; Yongping Jiang; Chengjun Li; Nongluk Sriwilaijaroen; Hiroaki Hiramatsu; Yasuo Suzuki; Yoshihiro Kawaoka; Hualan Chen

ABSTRACT Influenza viruses of the H6 subtype have been isolated from wild and domestic aquatic and terrestrial avian species throughout the world since their first detection in a turkey in Massachusetts in 1965. Since 1997, H6 viruses with different neuraminidase (NA) subtypes have been detected frequently in the live poultry markets of southern China. Although sequence information has been gathered over the last few years, the H6 viruses have not been fully biologically characterized. To investigate the potential risk posed by H6 viruses to humans, here we assessed the receptor-binding preference, replication, and transmissibility in mammals of a series of H6 viruses isolated from live poultry markets in southern China from 2008 to 2011. Among the 257 H6 strains tested, 87 viruses recognized the human type receptor. Genome sequence analysis of 38 representative H6 viruses revealed 30 different genotypes, indicating that these viruses are actively circulating and reassorting in nature. Thirty-seven of 38 viruses tested in mice replicated efficiently in the lungs and some caused mild disease; none, however, were lethal. We also tested the direct contact transmission of 10 H6 viruses in guinea pigs and found that 5 viruses did not transmit to the contact animals, 3 viruses transmitted to one of the three contact animals, and 2 viruses transmitted to all three contact animals. Our study demonstrates that the H6 avian influenza viruses pose a clear threat to human health and emphasizes the need for continued surveillance and evaluation of the H6 influenza viruses circulating in nature. IMPORTANCE Avian influenza viruses continue to present a challenge to human health. Research and pandemic preparedness have largely focused on the H5 and H7 subtype influenza viruses in recent years. Influenza viruses of the H6 subtype have been isolated from wild and domestic aquatic and terrestrial avian species throughout the world since their first detection in the United States in 1965. Since 1997, H6 viruses have been detected frequently in the live poultry markets of southern China; however, the biological characterization of these viruses is very limited. Here, we assessed the receptor-binding preference, replication, and transmissibility in mammals of a series of H6 viruses isolated from live poultry markets in southern China and found that 34% of the viruses are able to bind human type receptors and that some of them are able to transmit efficiently to contact animals. Our study demonstrates that the H6 viruses pose a clear threat to human health.


Journal of General Virology | 2010

Alterations in receptor-binding properties of swine influenza viruses of the H1 subtype after isolation in embryonated chicken eggs

Nobuhiro Takemae; Ruttapong Ruttanapumma; Sujira Parchariyanon; Shuji Yoneyama; Tsuyoshi Hayashi; Hiroaki Hiramatsu; Nongluk Sriwilaijaroen; Yuko Uchida; Sachiko Kondo; Hirokazu Yagi; Koichi Kato; Yasuo Suzuki; Takehiko Saito

Alterations of the receptor-binding properties of swine influenza A viruses (SIVs) during their isolation in embryonated chicken eggs have not been well studied. In this study, the receptor-binding properties of classical H1 SIVs isolated solely in eggs or Madin-Darby canine kidney (MDCK) cells were examined. Sequencing analysis revealed substitutions of D190V/N or D225G in the haemagglutinin (HA) proteins in egg isolates, whereas MDCK isolates retained HA genes identical to those of the original viruses present in the clinical samples. Egg isolates with substitution of either D190V/N or D225G had increased haemagglutinating activity for mouse and sheep erythrocytes, but reduced activity for rabbit erythrocytes. Additionally, egg isolates with D225G had increased haemagglutination activity for chicken erythrocytes. A direct binding assay using a sialyl glycopolymer that possessed either a 5-N-acetylneuraminic acid (Neu5Ac) alpha2,6galactose (Gal) or a Neu5Acalpha2,3Gal linkage revealed that the egg isolates used in this study showed higher binding activity to the Neu5Acalpha2,3Gal receptor than MDCK isolates. Increased binding activity of the egg isolates to the Neu5Acalpha2,3Gal receptor was also confirmed by haemagglutination assay with resialylated chicken erythrocytes by Galbeta1,3/4GlcNAcalpha2,3-sialyltransferase. These observations were reinforced by flow-cytometric and N-glycan analyses of the erythrocytes. The alpha2,3-linked sialic acids were expressed predominantly on the surface of mouse and sheep erythrocytes. Chicken erythrocytes expressed Neu5Acalpha2,3Gal more abundantly than Neu5Acalpha2,6Gal, and rabbit erythrocytes expressed both 5-N-glycolylneuraminic acid (Neu5Gc) alpha2,6Gal and Neu5Acalpha2,6Gal. Our results demonstrate clearly that classical H1 SIVs undergo alterations in receptor-binding activity associated with an amino acid substitution in the HA protein during isolation and propagation in embryonated chicken eggs.


PLOS ONE | 2011

N-Glycans from Porcine Trachea and Lung: Predominant NeuAcα2-6Gal Could Be a Selective Pressure for Influenza Variants in Favor of Human-Type Receptor

Nongluk Sriwilaijaroen; Sachiko Kondo; Hirokazu Yagi; Nobuhiro Takemae; Takehiko Saito; Hiroaki Hiramatsu; Koichi Kato; Yasuo Suzuki

It is known that pigs acted as “mixing vessels” for genesis of a new reassortant influenza strain responsible for pandemic H1N1 2009. However, the host factors driving the evolution of a reassorted virus in pigs to ‘jump species’ resulting in a human outbreak remain unclear. N-glycans derived from the porcine respiratory tract were enzymatically released, fluorescent labeled with 2-aminopyridine, separated according to charge, size and hydrophobicity, and structurally identified by a two-dimensional (size and hydrophobicity) HPLC mapping technique and MALDI-TOF mass spectrometry before and after exo-glycosidase digestion. We found a 3-, 5-, and 13-fold increases in NeuAcα2-6, a preferable human influenza receptor, over NeuAcα2-3, an avian influenza receptor, from upper and lower parts of the porcine trachea towards the porcine lung, a major target organ for swine virus replication. The large proportion of NeuAcα2-6 may exert selective pressure for selection of influenza variants with altered receptor preference for this human-type α2-6 receptor, a crucial first step for generating a human pandemic.


Mbio | 2015

Characterization of H5N1 Influenza Virus Variants with Hemagglutinin Mutations Isolated from Patients

Yohei Watanabe; Yasuha Arai; Tomo Daidoji; Norihito Kawashita; Madiha S. Ibrahim; Emad Mohamed Elgendy; Hiroaki Hiramatsu; Ritsuko Kubota-Koketsu; Tatsuya Takagi; Takeomi Murata; Kazuo Takahashi; Yoshinobu Okuno; Takaaki Nakaya; Yasuo Suzuki; Kazuyoshi Ikuta

ABSTRACT A change in viral hemagglutinin (HA) receptor binding specificity from α2,3- to α2,6-linked sialic acid is necessary for highly pathogenic avian influenza (AI) virus subtype H5N1 to become pandemic. However, details of the human-adaptive change in the H5N1 virus remain unknown. Our database search of H5N1 clade 2.2.1 viruses circulating in Egypt identified multiple HA mutations that had been selected in infected patients. Using reverse genetics, we found that increases in both human receptor specificity and the HA pH threshold for membrane fusion were necessary to facilitate replication of the virus variants in human airway epithelia. Furthermore, variants with enhanced replication in human cells had decreased HA stability, apparently to compensate for the changes in viral receptor specificity and membrane fusion activity. Our findings showed that H5N1 viruses could rapidly adapt to growth in the human airway microenvironment by altering their HA properties in infected patients and provided new insights into the human-adaptive mechanisms of AI viruses. IMPORTANCE Circulation between bird and human hosts may allow H5N1 viruses to acquire amino acid changes that increase fitness for human infections. However, human-adaptive changes in H5N1 viruses have not been adequately investigated. In this study, we found that multiple HA mutations were actually selected in H5N1-infected patients and that H5N1 variants with some of these HA mutations had increased human-type receptor specificity and increased HA membrane fusion activity, both of which are advantageous for viral replication in human airway epithelia. Furthermore, HA mutants selected during viral replication in patients were likely to have less HA stability, apparently as a compensatory mechanism. These results begin to clarify the picture of the H5N1 human-adaptive mechanism. Circulation between bird and human hosts may allow H5N1 viruses to acquire amino acid changes that increase fitness for human infections. However, human-adaptive changes in H5N1 viruses have not been adequately investigated. In this study, we found that multiple HA mutations were actually selected in H5N1-infected patients and that H5N1 variants with some of these HA mutations had increased human-type receptor specificity and increased HA membrane fusion activity, both of which are advantageous for viral replication in human airway epithelia. Furthermore, HA mutants selected during viral replication in patients were likely to have less HA stability, apparently as a compensatory mechanism. These results begin to clarify the picture of the H5N1 human-adaptive mechanism.


Antiviral Research | 2012

Antiviral effects of Psidium guajava Linn. (guava) tea on the growth of clinical isolated H1N1 viruses: its role in viral hemagglutination and neuraminidase inhibition.

Nongluk Sriwilaijaroen; Syuichi Fukumoto; Kenji Kumagai; Hiroaki Hiramatsu; Takato Odagiri; Masato Tashiro; Yasuo Suzuki

Rapid evolution of influenza RNA virus has resulted in limitation of vaccine effectiveness, increased emergence of drug-resistant viruses and occurrence of pandemics. A new effective antiviral is therefore needed for control of the highly mutative influenza virus. Teas prepared by the infusion method were tested for their anti-influenza activity against clinical influenza A (H1N1) isolates by a 19-h influenza growth inhibition assay with ST6Gal I-expressing MDCK cells (AX4 cells) using fluorogenic quantification and chromogenic visualization. Guava tea markedly inhibited the growth of A/Narita/1/2009 (amantadine-resistant pandemic 2009 strain) at an IC(50) of 0.05% and the growth of A/Yamaguchi/20/06 (sensitive strain) and A/Kitakyushu/10/06 (oseltamivir-resistant strain) at similar IC(50) values ranging from 0.24% to 0.42% in AX4 cells, being 3.4- to 5.4-fold more potent than green tea (IC(50) values: 0.27% for the 2009 pandemic strain and 0.91% to 1.44% for the seasonal strains). In contrast to both teas, oseltamivir carboxylate (OC) demonstrated high potency against the growth of A/Narita/1/09 (IC(50) of 3.83nM) and A/Yamaguchi/20/06 (IC(50) of 11.57nM) but not against that of A/Kitakyushu/10/06 bearing a His274-to-Tyr substitution (IC(50) of 15.97μM). Immunofluorescence analysis under a confocal microscope indicated that both teas inhibited the most susceptible A/Narita/1/2009 virus at the initial stage of virus infection. This is consistent with results of direct inhibition assays showing that both teas inhibited viral hemagglutination at concentrations comparable to their growth inhibition concentrations but inhibited sialidase activity at about 8-times higher concentrations. Guava tea shows promise to be efficacious for control of epidemic and pandemic influenza viruses including oseltamivir-resistant strains, and its broad target blockage makes it less likely to lead to emergence of viral resistance.


Glycoconjugate Journal | 2009

Analysis of N-glycans in embryonated chicken egg chorioallantoic and amniotic cells responsible for binding and adaptation of human and avian influenza viruses

Nongluk Sriwilaijaroen; Sachiko Kondo; Hirokazu Yagi; Prapon Wilairat; Hiroaki Hiramatsu; Morihiro Ito; Yasuhiko Ito; Koichi Kato; Yasuo Suzuki

The initial step essential in influenza virus infection is specific binding of viral hemagglutinin to host cell-surface glycan receptors. Influenza A virus specificity for the host is mediated by viral envelope hemagglutinin, that binds to receptors containing glycans with terminal sialic acids. Human viruses preferentially bind to α2→6 linked sialic acids on receptors of host cells, whereas avian viruses are specific for the α2→3 linkage on the target cells. Human influenza virus isolates more efficiently infect amniotic membrane (AM) cells than chorioallantoic membrane (CAM) cells. N-glycans were isolated from AM and CAM cells of 10-day-old chicken embryonated eggs and their structures were analyzed by multi-dimensional HPLC mapping and MALDI-TOF-MS techniques. Terminal N-acetylneuraminic acid contents in the two cell types were similar. However, molar percents of α2→3 linkage preferentially bound by avian influenza virus were 27.2 in CAM cells and 15.4 in AM cells, whereas those of α2→6 linkage favored by human influenza virus were 8.3 (CAM) and 14.2 (AM). Molar percents of sulfated glycans, recognized by human influenza virus, in CAM and AM cells were 3.8 and 12.7, respectively. These results have revealed structures and molar percents of N-glycans in CAM and AM cells important in determining human and avian influenza virus infection and viral adaptation.

Collaboration


Dive into the Hiroaki Hiramatsu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yohei Watanabe

Kyoto Prefectural University of Medicine

View shared research outputs
Top Co-Authors

Avatar

Koichi Kato

Nagoya City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge