Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroaki Iwasa is active.

Publication


Featured researches published by Hiroaki Iwasa.


Aging Cell | 2010

Novel EGF pathway regulators modulate C. elegans healthspan and lifespan via EGF receptor, PLC‐γ, and IP3R activation

Hiroaki Iwasa; Simon Yu; Jian Xue; Monica Driscoll

Improving health of the rapidly growing aging population is a critical medical, social, and economic goal. Identification of genes that modulate healthspan, the period of mid‐life vigor that precedes significant functional decline, will be an essential part of the effort to design anti‐aging therapies. Because locomotory decline in humans is a major contributor to frailty and loss of independence and because slowing of movement is a conserved feature of aging across phyla, we screened for genetic interventions that extend locomotory healthspan of Caenorhabditis elegans. From a group of 54 genes previously noted to encode secreted proteins similar in sequence to extracellular domains of insulin receptor, we identified two genes for which RNAi knockdown delayed age‐associated locomotory decline, conferring a high performance in advanced age phenotype (Hpa). Unexpectedly, we found that hpa‐1 and hpa‐2 act through the EGF pathway, rather than the insulin signaling pathway, to control systemic healthspan benefits without detectable developmental consequences. Further analysis revealed a potent role of EGF signaling, acting via downstream phospholipase C‐γplc‐3 and inositol‐3‐phosphate receptor itr‐1, to promote healthy aging associated with low lipofuscin levels, enhanced physical performance, and extended lifespan. This study identifies HPA‐1 and HPA‐2 as novel negative regulators of EGF signaling and constitutes the first report of EGF signaling as a major pathway for healthy aging. Our data raise the possibility that EGF family members should be investigated for similar activities in higher organisms.


Molecular and Cellular Biology | 2014

Screening with a Novel Cell-Based Assay for TAZ Activators Identifies a Compound That Enhances Myogenesis in C2C12 Cells and Facilitates Muscle Repair in a Muscle Injury Model

Zeyu Yang; Kentaro Nakagawa; Aradhan Sarkar; Junichi Maruyama; Hiroaki Iwasa; Yijun Bao; Mari Ishigami-Yuasa; Shigeru Ito; Hiroyuki Kagechika; Shoji Hata; Hiroshi Nishina; Shinya Abe; Masanobu Kitagawa; Yutaka Hata

ABSTRACT The transcriptional coactivator with a PDZ-binding motif (TAZ) cooperates with various transcriptional factors and plays various roles. Immortalized human mammalian epithelial MCF10A cells form spheres when TAZ is overexpressed and activated. We developed a cell-based assay using sphere formation by TAZ-expressing MCF10A cells as a readout to screen 18,458 chemical compounds for TAZ activators. Fifty compounds were obtained, and 47 were confirmed to activate the TAZ-dependent TEAD-responsive reporter activity in HEK293 cells. We used the derived subset of compounds as a TAZ activator candidate minilibrary and searched for compounds that promote myogenesis in mouse C2C12 myoblast cells. In this study, we focused on one compound, IBS008738. IBS008738 stabilizes TAZ, increases the unphosphorylated TAZ level, enhances the association of MyoD with the myogenin promoter, upregulates MyoD-dependent gene transcription, and competes with myostatin in C2C12 cells. TAZ knockdown verifies that the effect of IBS008738 depends on endogenous TAZ in C2C12 cells. IBS008738 facilitates muscle repair in cardiotoxin-induced muscle injury and prevents dexamethasone-induced muscle atrophy. Thus, this cell-based assay is useful to identify TAZ activators with a variety of cellular outputs. Our findings also support the idea that TAZ is a potential therapeutic target for muscle atrophy.


Journal of Biological Chemistry | 2013

The RASSF6 tumor suppressor protein regulates apoptosis and the cell cycle via MDM2 protein and p53 protein.

Hiroaki Iwasa; Takumi Kudo; Sainawaer Maimaiti; Mitsunobu Ikeda; Jun-ichi Maruyama; Kentaro Nakagawa; Yutaka Hata

Background: RASSF6 is a proapoptotic protein related to the Hippo pathway. Results: RASSF6 interacts with MDM2 and stabilizes p53. Conclusion: RASSF6 induces apoptosis and cell cycle arrest via p53. Significance: Our work supports the importance of the C-terminal RASSF-MDM2-p53 axis. Ras association domain family (RASSF) 6 is a member of the C-terminal RASSF proteins such as RASSF1A and RASSF3. RASSF6 is involved in apoptosis in various cells under miscellaneous conditions, but it remains to be clarified how RASSF6 exerts tumor-suppressive roles. We reported previously that RASSF3 facilitates the degradation of MDM2, a major E3 ligase of p53, and stabilizes p53 to function as a tumor suppressor. In this study, we demonstrate that RASSF6 overexpression induces G1/S arrest in p53-positive cells. Its depletion prevents UV- and VP-16-induced apoptosis and G1/S arrest in HCT116 and U2OS cells. RASSF6-induced apoptosis partially depends on p53. RASSF6 binds MDM2 and facilitates its ubiquitination. RASSF6 depletion blocks the increase of p53 in response to UV exposure and up-regulation of p53 target genes. RASSF6 depletion delays DNA repair in UV- and VP-16-treated cells and increases polyploid cells after VP-16 treatment. These findings indicate that RASSF6 stabilizes p53, regulates apoptosis and the cell cycle, and functions as a tumor suppressor. Together with the previous reports regarding RASSF1A and RASSF3, the stabilization of p53 may be the common function of the C-terminal RASSF proteins.


Experimental Cell Research | 2013

Yes-associated protein homolog, YAP-1, is involved in the thermotolerance and aging in the nematode Caenorhabditis elegans

Hiroaki Iwasa; Sainawaer Maimaiti; Hidehito Kuroyanagi; Shodai Kawano; Kazutoshi Inami; Shikshya Timalsina; Mitsunobu Ikeda; Kentaro Nakagawa; Yutaka Hata

The mammalian Hippo pathway comprises mammalian Ste20-like kinases (MST1/2) and large tumor suppressor kinases (LATS1/2). LATS1/2, which are activated by MST1/2, phosphorylate a transcriptional co-activator, yes-associated protein (YAP), and induce the recruitment of YAP by 14-3-3 to cytoplasm, so that the TEAD-dependent gene transcriptions are turned off. Although the core components of the Hippo pathway are well conserved in metazoans, it has been discussed that Caenorhabditis elegans lacks YAP ortholog, we found that F13E6.4 gene encodes a protein that shows sequence similarities to YAP in the N-terminal TEAD-binding domain and in the WW domain. We designated this gene as yap-1. YAP-1 is widely expressed in various cells such as epithelial cells, muscles, hypodermal cells, gonadal sheath cells, spermatheca, and hypodermal cells. YAP-1 is distributed in cytoplasm and nuclei. wts-1 (LATS ortholog) and ftt-2 (14-3-3 ortholog) knockdowns cause nuclear accumulation of YAP-1, supporting that the subcellular localization of YAP-1 is regulated in a similar way as that of YAP. Heat shock also causes the nuclear accumulation of YAP-1 but after heat shock, YAP-1 translocates to cytoplasm. Knockdowns of DAF-21 (HSP90 ortholog) and HSF-1block the nuclear export of YAP-1 during this recovery. YAP-1 overexpression is beneficial for thermotolerance, whereas YAP-1 hyperactivity induced by wts-1 and ftt-2 knockdowns is deleterious on thermal response and yap-1 deficiency promotes health aging. In short, YAP-1 partially shares basal characters with mammalian YAP and plays a role in thermal stress response and healthy aging.


Journal of Biochemistry | 2015

A cell-based screening for TAZ activators identifies ethacridine, a widely used antiseptic and abortifacient, as a compound that promotes dephosphorylation of TAZ and inhibits adipogenesis in C3H10T1/2 cells

Shodai Kawano; Junichi Maruyama; Shunta Nagashima; Kazutoshi Inami; Wenzhe Qiu; Hiroaki Iwasa; Kentaro Nakagawa; Mari Ishigami-Yuasa; Hiroyuki Kagechika; Hiroshi Nishina; Yutaka Hata

Transcriptional co-activator with PSD-95/Dlg-A/ZO-1 (PDZ)-binding motif (TAZ) regulates in cell proliferation and differentiation. In mesenchymal stem cells it promotes osteogenesis and myogenesis, and suppresses adipogenesis. TAZ activators are expected to prevent osteoporosis, obesity and muscle atrophy. TAZ activation induces epithelial-mesenchymal transition, confers stemness to cancer cells and leads to poor clinical prognosis in cancer patients. In this point of view, TAZ inhibitors should contribute to cancer therapy. Thus, TAZ attracts attention as a two-faced drug target. We screened for TAZ modulators by using human lung cancer A549 cells expressing the fluorescent reporter. Through this assay, we obtained TAZ activator candidates. We unexpectedly found that ethacridine, a widely used antiseptic and abortifacient, enhances the interaction of TAZ and protein phosphatases and increases unphosphorylated and nuclear TAZ. Ethacridine inhibits adipogenesis in mesenchymal C3H10T1/2 cells through the activation of TAZ. This finding suggests that ethacridine is a bona fide TAZ activator and supports that our assay is useful to discover TAZ activators.


Journal of Biochemistry | 2015

MAGI2/S-SCAM outside brain

Shunta Nagashima; Manami Kodaka; Hiroaki Iwasa; Yutaka Hata

Membrane-associated guanylate kinase with an inverted arrangement of protein-protein interaction domains (MAGI)2 (also called synaptic scaffolding molecule (S-SCAM), atrophin-1-interacting protein 1, activin receptor-interacting protein 1) is a scaffold protein that binds a wide variety of receptors, cell adhesion molecules and signalling molecules. It also interacts with other scaffold proteins and adaptors, and forms a protein network that supports cell junctions. As it is highly expressed in brain, the study on its roles in synaptic organization initially preceded. However, mounting evidence indicates that MAGI2/S-SCAM functions as a tumour suppressor and plays essential roles to maintain the integrity of cell structures in non-neuronal tissues. We review the articles regarding to MAGI2/S-SCAM outside brain and discuss future perspectives for the research of MAGI family proteins.


Experimental Cell Research | 2015

A new cell-based assay to evaluate myogenesis in mouse myoblast C2C12 cells

Manami Kodaka; Zeyu Yang; Kentaro Nakagawa; Junichi Maruyama; Xiaoyin Xu; Aradhan Sarkar; Ayana Ichimura; Yusuke Nasu; Takeaki Ozawa; Hiroaki Iwasa; Mari Ishigami-Yuasa; Shigeru Ito; Hiroyuki Kagechika; Yutaka Hata

The development of the efficient screening system of detecting compounds that promote myogenesis and prevent muscle atrophy is important. Mouse C2C12 cells are widely used to evaluate myogenesis but the procedures of the assay are not simple and the quantification is not easy. We established C2C12 cells expressing the N-terminal green fluorescence protein (GFP) and the C-terminal GFP (GFP1-10 and GFP11 cells). GFP1-10 and GFP11 cells do not exhibit GFP signals until they are fused. The signal intensity correlates with the expression of myogenic markers and myofusion. Myogenesis-promoting reagents, such as insulin-like growth factor-1 (IGF1) and β-guanidinopropionic acid (GPA), enhance the signals, whereas the poly-caspase inhibitor, z-VAD-FMK, suppresses it. GFP signals are observed when myotubes formed by GFP1-10 cells are fused with single nuclear GFP11 cells, and enhanced by IGF1, GPA, and IBS008738, a recently-reported myogenesis-promoting reagent. Fusion between myotubes formed by GFP1-10 and GFP11 cells is associated with the appearance of GFP signals. IGF1 and GPA augment these signals, whereas NSC23766, Rac inhibitor, decreases them. The conditioned medium of cancer cells suppresses GFP signals during myogenesis and reduces the width of GFP-positive myotubes after differentiation. Thus the novel split GFP-based assay will provide the useful method for the study of myogenesis, myofusion, and atrophy.


Cancers | 2015

RASSF6; the Putative Tumor Suppressor of the RASSF Family

Hiroaki Iwasa; Xinliang Jiang; Yutaka Hata

Humans have 10 genes that belong to the Ras association (RA) domain family (RASSF). Among them, RASSF7 to RASSF10 have the RA domain in the N-terminal region and are called the N-RASSF proteins. In contradistinction to them, RASSF1 to RASSF6 are referred to as the C-RASSF proteins. The C-RASSF proteins have the RA domain in the middle region and the Salvador/RASSF/Hippo domain in the C-terminal region. RASSF6 additionally harbors the PSD-95/Discs large/ZO-1 (PDZ)-binding motif. Expression of RASSF6 is epigenetically suppressed in human cancers and is generally regarded as a tumor suppressor. RASSF6 induces caspase-dependent and -independent apoptosis. RASSF6 interacts with mammalian Ste20-like kinases (homologs of Drosophila Hippo) and cross-talks with the Hippo pathway. RASSF6 binds MDM2 and regulates p53 expression. The interactions with Ras and Modulator of apoptosis 1 (MOAP1) are also suggested by heterologous protein-protein interaction experiments. RASSF6 regulates apoptosis and cell cycle through these protein-protein interactions, and is implicated in the NF-κB and JNK signaling pathways. We summarize our current knowledge about RASSF6 and discuss what common and different properties RASSF6 and the other C-RASSF proteins have.


FEBS Letters | 2017

Domain analysis of Ras‐association domain family member 6 upon interaction with MDM2

Aradhan Sarkar; Hiroaki Iwasa; Shakhawoat Hossain; Xiaoyin Xu; Takeru Sawada; Takanobu Shimizu; Junichi Maruyama; Kyoko Arimoto-Matsuzaki; Yutaka Hata

The tumor suppressor Ras‐association domain family member 6 (RASSF6) has Ras‐association domain (RA) and Salvador/RASSF/Hippo domain (SARAH). RASSF6 antagonizes MDM2, stabilizes p53, and induces apoptosis and cell cycle arrest. We previously demonstrated the interaction between RASSF6 and MDM2, but did not determine how both proteins interact with each other. We have shown here that N‐terminal, RA, and SARAH domains of RASSF6 interact with MDM2 at distinct regions. RA binds to the RING‐finger region of MDM2 and stabilizes p53. SARAH binds RA and blocks the interaction between RA and MDM2. RA overexpression induces p53‐dependent apoptosis and senescence. In the presence of active KRas, the interaction between RA and MDM2 is recovered. In this way, RA and SARAH play an important role in Ras‐mediated regulation of p53.


Experimental Cell Research | 2013

Characterization of RSF-1, the Caenorhabditis elegans homolog of the Ras-association domain family protein 1.

Hiroaki Iwasa; Hidehito Kuroyanagi; Sainawaer Maimaiti; Mitsunobu Ikeda; Kentaro Nakagawa; Yutaka Hata

Mammals have 10 RASSF proteins, which are characterized by the Ras-association (RA) domain. Among them, RASSF1 to RASSF6 have the Salvador/RASSF/Hippo (SARAH) domain and form the subclass C-terminal RASSF proteins. Drosophila genome has a single C-terminal RASSF, dRASSF. All these RASSF proteins are related to the tumor suppressive Hippo pathway, and are considered to function as tumor suppressors. Caenorhabditis elegans T24F1.3 encodes a protein with the RA and the SARAH domains. The amino acid sequences are 40% and 55% similar to those of RASSF1 in the RA and the SARAH domains, respectively. We have characterized T24F1.3 gene product and named it RSF-1 as RASSF1 homolog. RSF-1 is widely expressed in epithelial cells. About 14% rsf-1 mutants exhibit defects in embryonal morphogenesis and the actin disorganization. The combinatorial synthetic lethal analysis demonstrates that the lethality is enhanced to more than 80% in rsf-1 mutants with the WASP-family verprolin homologous protein complex-related gene depletions and corroborates the implication of RSF-1 in the regulation of actin cytoskeleton. In rsf-1 mutants, the structures of muscle actin are preserved, but the swimming ability is impaired. Although we could not detect the direct physical interaction of LET-60 with RSF-1, rsf-1 mutants suppress the multivulva phenotype of the active let-60 mutants, suggesting that rsf-1 genetically interacts with the Ras signaling.

Collaboration


Dive into the Hiroaki Iwasa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kentaro Nakagawa

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Junichi Maruyama

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Aradhan Sarkar

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Hiroyuki Kagechika

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Mari Ishigami-Yuasa

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Nishina

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Kyoko Arimoto-Matsuzaki

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Shunta Nagashima

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Xiaoyin Xu

Tokyo Medical and Dental University

View shared research outputs
Researchain Logo
Decentralizing Knowledge