Hiroshi Nishina
Tokyo Medical and Dental University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hiroshi Nishina.
Developmental Cell | 2002
Hiroshi Takayanagi; Sunhwa Kim; Takako Koga; Hiroshi Nishina; Masashi Isshiki; Hiroki Yoshida; Akio Saiura; Miho Isobe; Taeko Yokochi; Jun-ichiro Inoue; Erwin F. Wagner; Tak W. Mak; Tatsuhiko Kodama; Tadatsugu Taniguchi
Signaling by RANKL is essential for terminal differentiation of monocytes/macrophages into osteoclasts. The TRAF6 and c-Fos signaling pathways both play important roles downstream of RANKL. We show here that RANKL selectively induces NFATc1 expression via these two pathways. RANKL also evokes Ca(2+) oscillations that lead to calcineurin-mediated activation of NFATc1, and therefore triggers a sustained NFATc1-dependent transcriptional program during osteoclast differentiation. We also show that NFATc1-deficient embryonic stem cells fail to differentiate into osteoclasts in response to RANKL stimulation, and that ectopic expression of NFATc1 causes precursor cells to undergo efficient differentiation without RANKL signaling. Thus, NFATc1 may represent a master switch for regulating terminal differentiation of osteoclasts, functioning downstream of RANKL.
Cell | 2007
Takashi Nakamura; Yuuki Imai; Takahiro Matsumoto; Shingo Sato; Kazusane Takeuchi; Katsuhide Igarashi; Yoshifumi Harada; Yoshiaki Azuma; Andrée Krust; Yoko Yamamoto; Hiroshi Nishina; Shu Takeda; Hiroshi Takayanagi; Daniel Metzger; Jun Kanno; Kunio Takaoka; T. John Martin; Pierre Chambon; Shigeaki Kato
Estrogen prevents osteoporotic bone loss by attenuating bone resorption; however, the molecular basis for this is unknown. Here, we report a critical role for the osteoclastic estrogen receptor alpha (ERalpha) in mediating estrogen-dependent bone maintenance in female mice. We selectively ablated ERalpha in differentiated osteoclasts (ERalpha(DeltaOc/DeltaOc)) and found that ERalpha(DeltaOc/DeltaOc) females, but not males, exhibited trabecular bone loss, similar to the osteoporotic bone phenotype in postmenopausal women. Further, we show that estrogen induced apoptosis and upregulation of Fas ligand (FasL) expression in osteoclasts of the trabecular bones of WT but not ERalpha(DeltaOc/DeltaOc) mice. The expression of ERalpha was also required for the induction of apoptosis by tamoxifen and estrogen in cultured osteoclasts. Our results support a model in which estrogen regulates the life span of mature osteoclasts via the induction of the Fas/FasL system, thereby providing an explanation for the osteoprotective function of estrogen as well as SERMs.
Nature | 2000
Kurt Bachmaier; Connie Krawczyk; Ivona Kozieradzki; Young-Yun Kong; Takehiko Sasaki; Antonio J. Oliveira-dos-Santos; Sanjeev Mariathasan; Dennis Bouchard; Andrew Wakeham; Annick Itie; Jenny Le; Pamela S. Ohashi; Ildiko Sarosi; Hiroshi Nishina; Stan Lipkowitz; Josef Penninger
The signalling thresholds of antigen receptors and co-stimulatory receptors determine immunity or tolerance to self molecules. Changes in co-stimulatory pathways can lead to enhanced activation of lymphocytes and autoimmunity, or the induction of clonal anergy. The molecular mechanisms that maintain immunotolerance in vivo and integrate co-stimulatory signals with antigen receptor signals in T and B lymphocytes are poorly understood. Members of the Cbl/Sli family of molecular adaptors function downstream from growth factor and antigen receptors. Here we show that gene-targeted mice lacking the adaptor Cbl-b develop spontaneous autoimmunity characterized by auto-antibody production, infiltration of activated T and B lymphocytes into multiple organs, and parenchymal damage. Resting cbl-b -/- lymphocytes hyperproliferate upon antigen receptor stimulation, and cbl-b-/- T cells display specific hyperproduction of the T-cell growth factor interleukin-2, but not interferon-γ or tumour necrosis factor-α. Mutation of Cbl-b uncouples T-cell proliferation, interleukin-2 production and phosphorylation of the GDP/GTP exchange factor Vav1 from the requirement for CD28 co-stimulation. Cbl-b is thus a key regulator of activation thresholds in mature lymphocytes and immunological tolerance and autoimmunity.
Hepatology | 2004
Isao Sakaida; Shuji Terai; Naoki Yamamoto; Koji Aoyama; Tsuyoshi Ishikawa; Hiroshi Nishina; Kiwamu Okita
We investigated the effect of bone marrow cell (BMC) transplantation on established liver fibrosis. BMCs of green fluorescent protein (GFP) mice were transplanted into 4‐week carbon tetrachloride (CCl4)–treated C57BL6 mice through the tail vein, and the mice were treated for 4 more weeks with CCl4 (total, 8 weeks). Sirius red and GFP staining clearly indicated migrated BMCs existing along with fibers, with strong expression of matrix metalloproteinase (MMP)‐9 shown by anti–MMP‐9 antibodies and in situ hybridization. Double fluorescent immunohistochemistry showed the expression of MMP‐9 on the GFP‐positive cell surface. Film in situ zymographic analysis revealed strong gelatinolytic activity in the periportal area coinciding with the location of MMP‐9–positive BMCs. Four weeks after BMC transplantation, mice had significantly reduced liver fibrosis, as assessed by hydroxyproline content of the livers, compared to that of mice treated with CCl4 alone. Subpopulation of Liv8‐negative BMCs was responsible for this fibrolytic effect. In conclusion, mice with BMC transplants with continuous CCl4 injection had reduced liver fibrosis and a significantly improved survival rate after BMC transplantation compared with mice treated with CCl4 alone. This finding introduces a new concept for the therapy of liver fibrosis. Supplementary material for this article can be found on the HEPATOLOGY website (http://interscience.wiley.com/jpages/0270‐9139/suppmat/index.html). (HEPATOLOGY 2004;40:1304–1311.)
Current Biology | 1998
K.-D. Fischer; Young-Yun Kong; Hiroshi Nishina; K. Tedford; L. E. M. Marengere; Ivona Kozieradzki; Takehiko Sasaki; M. Starr; G. Chan; S. Gardener; M. P. Nghiem; Dennis Bouchard; M. Barbacid; Alan Bernstein; J. M. Penninger
BACKGROUND Vav is a guanine-nucleotide exchange factor for the Rho-like small GTPases RhoA, Rac1 and Cdc42, which regulate cytoskeletal reorganization and activation of stress-activated protein kinases (SAPK/JNKs). Vav is expressed in hematopoietic cells and is phosphorylated in T and B cells following activation of various growth factor or antigen receptors. Vav interacts with several signaling molecules in T cells, but the functional relevance of these interactions is established only for Slp76: they cooperate to induce activity of the transcription factor NF-AT and interleukin-2 expression. We have investigated the role of Vav in T cells by generating vav-/- mice. RESULTS Mice deficient for vav were viable and healthy, but had impaired T-cell development. In vav-/- T cells, in response to activation of the T-cell receptor (TCR), cell cycle progression, induction of NF-ATc1 activity, downregulation of the cell-cycle inhibitor p27Kip1, interleukin-2 production, actin polymerization and the clustering of TCRs into patches and caps--a cytoskeletal reorganization process--were defective. TCR-mediated activation of mitogen-activated protein kinase and SAPK/JNK was unaffected. Ca2+ mobilization was impaired in vav-/- thymocytes and T cells. In wild-type cells, Vav constitutively associated with the cytoskeletal membrane anchors talin and vinculin. In the absence of Vav, phosphorylation of Slp76, Slp76-talin interactions, and recruitment of the actin cytoskeleton to the CD3 zeta chain of the TCR co-receptor were impaired. CONCLUSIONS Vav is a crucial regulator of TCR-mediated Ca2+ flux, cytoskeletal reorganization and TCR clustering, and these are required for T-cell maturation, interleukin-2 production and cell cycle progression.
Immunity | 2001
Hiroki Yoshida; Shinjiro Hamano; Giorgio Senaldi; Todd Covey; Raffaella Faggioni; Sharon Mu; Min Xia; Andrew Wakeham; Hiroshi Nishina; Julia Potter; Chris Saris; Tak W. Mak
WSX-1 is a class I cytokine receptor with homology to the IL-12 receptors. The physiological role of WSX-1, which is expressed mainly in T cells, was investigated in gene-targeted WSX-1-deficient mice. IFN-gamma production was reduced in isolated WSX-1(-/-) T cells subjected to primary stimulation in vitro to induce Th1 differentiation but was normal in fully differentiated and activated WSX-1(-/-) Th1 cells that had received secondary stimulation. WSX-1(-/-) mice were remarkably susceptible to Leishmania major infection, showing impaired IFN-gamma production early in the infection. However, IFN-gamma production during the later phases of the infection was not impaired in the knockout. WSX-1(-/-) mice also showed poorly differentiated granulomas with dispersed accumulations of mononuclear cells when infected with bacillus Calmette-Guerin (BCG). Thus, WSX-1 is essential for the initial mounting of Th1 responses but dispensable for their maintenance.
Immunity | 1998
Hiroki Yoshida; Hiroshi Nishina; Hiroaki Takimoto; Luc E. M. Marengere; Andrew Wakeham; Denis Bouchard; Young-Yun Kong; Toshiaki Ohteki; Arda Shahinian; Martin F. Bachmann; Pamela S. Ohashi; Josef Penninger; Gerald R. Crabtree; Tak W. Mak
NF-ATc1 is a member of a family of genes that encodes the cytoplasmic component of the nuclear factor of activated T cells (NF-AT). In activated T cells, nuclear NF-AT binds to the promoter regions of multiple cytokine genes and induces their transcription. The role of NF-ATc1 was investigated in recombination activating gene-1 (RAG-1)-deficient blastocyst complementation assays using homozygous NF-ATc1-/- mutant ES cell lines. NF-ATc1-/-/RAG-1-/- chimeric mice showed reduced numbers of thymocytes and impaired proliferation of peripheral lymphocytes, but normal production of IL-2. Induction in vitro of Th2 responses, as demonstrated by a decrease in IL-4 and IL-6 production, was impaired in mutant T cells. These data indicate that NF-ATc1 plays roles in the development of T lymphocytes and in the differentiation of the Th2 response.
Cell | 2010
G. Gregory Neely; Keiji Kuba; Anthony Cammarato; Kazuya Isobe; Sabine Amann; Liyong Zhang; Mitsushige Murata; Lisa Elmén; Vaijayanti Gupta; Suchir Arora; Rinku Sarangi; Debasis Dan; Susumu Fujisawa; Takako Usami; Cui ping Xia; Alex C. Keene; Nakissa N. Alayari; Hiroyuki Yamakawa; Ulrich Elling; Christian Berger; Maria Novatchkova; Rubina Koglgruber; Keiichi Fukuda; Hiroshi Nishina; Mitsuaki Isobe; J. Andrew Pospisilik; Yumiko Imai; Arne Pfeufer; Andrew A. Hicks; Peter P. Pramstaller
Heart diseases are the most common causes of morbidity and death in humans. Using cardiac-specific RNAi-silencing in Drosophila, we knocked down 7061 evolutionarily conserved genes under conditions of stress. We present a first global roadmap of pathways potentially playing conserved roles in the cardiovascular system. One critical pathway identified was the CCR4-Not complex implicated in transcriptional and posttranscriptional regulatory mechanisms. Silencing of CCR4-Not components in adult Drosophila resulted in myofibrillar disarray and dilated cardiomyopathy. Heterozygous not3 knockout mice showed spontaneous impairment of cardiac contractility and increased susceptibility to heart failure. These heart defects were reversed via inhibition of HDACs, suggesting a mechanistic link to epigenetic chromatin remodeling. In humans, we show that a common NOT3 SNP correlates with altered cardiac QT intervals, a known cause of potentially lethal ventricular tachyarrhythmias. Thus, our functional genome-wide screen in Drosophila can identify candidates that directly translate into conserved mammalian genes involved in heart function.
Nature Cell Biology | 2004
Teiji Wada; Nicholas Joza; Hai-Ying M. Cheng; Takehiko Sasaki; Ivona Kozieradzki; Kurt Bachmaier; Toshiaki Katada; Martin Schreiber; Erwin F. Wagner; Hiroshi Nishina; Josef Penninger
During the development of multicellular organisms, concerted actions of molecular signalling networks determine whether cells undergo proliferation, differentiation, death or ageing. Here we show that genetic inactivation of the stress signalling kinase, MKK7, a direct activator of JNKs in mice, results in embryonic lethality and impaired proliferation of hepatocytes. Beginning at passage 4–5, mkk7−/− mouse embryonic fibroblasts (MEFs) display impaired proliferation, premature senescence and G2/M cell cycle arrest. Similarly, loss of c-Jun or expression of a c-JunAA mutant in which the JNK phosphorylation sites were replaced with alanine results in a G2/M cell-cycle block. The G2/M cell-cycle kinase CDC2 was identified as a target for the MKK7–JNK–c-Jun pathway. These data show that the MKK7–JNK–c-Jun signalling pathway couples developmental and environmental cues to CDC2 expression, G2/M cell cycle progression and cellular senescence in fibroblasts.
Mechanisms of Development | 2004
Makoto Furutani-Seiki; Takao Sasado; Chikako Morinaga; Hiroshi Suwa; Katsutoshi Niwa; Hiroki Yoda; Tomonori Deguchi; Yukihiro Hirose; Akihito Yasuoka; Thorsten Henrich; Tomomi Watanabe; Norimasa Iwanami; Daiju Kitagawa; Kota Saito; Masakazu Osakada; Sanae Kunimatsu; Akihiro Momoi; Harun Elmasri; Christoph Winkler; Mirana Ramialison; Felix Loosli; Rebecca Quiring; Matthias Carl; Clemens Grabher; Sylke Winkler; Filippo Del Bene; Ai Shinomiya; Yasuko Kota; Toshiyuki Yamanaka; Yasuko Okamoto
A large-scale mutagenesis screen was performed in Medaka to identify genes acting in diverse developmental processes. Mutations were identified in homozygous F3 progeny derived from ENU-treated founder males. In addition to the morphological inspection of live embryos, other approaches were used to detect abnormalities in organogenesis and in specific cellular processes, including germ cell migration, nerve tract formation, sensory organ differentiation and DNA repair. Among 2031 embryonic lethal mutations identified, 312 causing defects in organogenesis were selected for further analyses. From these, 126 mutations were characterized genetically and assigned to 105 genes. The similarity of the development of Medaka and zebrafish facilitated the comparison of mutant phenotypes, which indicated that many mutations in Medaka cause unique phenotypes so far unrecorded in zebrafish. Even when mutations of the two fish species cause a similar phenotype such as one-eyed-pinhead or parachute, more genes were found in Medaka than in zebrafish that produced the same phenotype when mutated. These observations suggest that many Medaka mutants represent new genes and, therefore, are important complements to the collection of zebrafish mutants that have proven so valuable for exploring genomic function in development.