Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroaki Katsura is active.

Publication


Featured researches published by Hiroaki Katsura.


Nature | 2012

Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets

Masaki Imai; Tokiko Watanabe; Masato Hatta; Subash C. Das; Makoto Ozawa; Kyoko Shinya; Gongxun Zhong; Anthony Hanson; Hiroaki Katsura; Shinji Watanabe; Chengjun Li; Eiryo Kawakami; S. Yamada; Maki Kiso; Yasuo Suzuki; Eileen A. Maher; Gabriele Neumann; Yoshihiro Kawaoka

Highly pathogenic avian H5N1 influenza A viruses occasionally infect humans, but currently do not transmit efficiently among humans. The viral haemagglutinin (HA) protein is a known host-range determinant as it mediates virus binding to host-specific cellular receptors. Here we assess the molecular changes in HA that would allow a virus possessing subtype H5 HA to be transmissible among mammals. We identified a reassortant H5 HA/H1N1 virus—comprising H5 HA (from an H5N1 virus) with four mutations and the remaining seven gene segments from a 2009 pandemic H1N1 virus—that was capable of droplet transmission in a ferret model. The transmissible H5 reassortant virus preferentially recognized human-type receptors, replicated efficiently in ferrets, caused lung lesions and weight loss, but was not highly pathogenic and did not cause mortality. These results indicate that H5 HA can convert to an HA that supports efficient viral transmission in mammals; however, we do not know whether the four mutations in the H5 HA identified here would render a wholly avian H5N1 virus transmissible. The genetic origin of the remaining seven viral gene segments may also critically contribute to transmissibility in mammals. Nevertheless, as H5N1 viruses continue to evolve and infect humans, receptor-binding variants of H5N1 viruses with pandemic potential, including avian–human reassortant viruses as tested here, may emerge. Our findings emphasize the need to prepare for potential pandemics caused by influenza viruses possessing H5 HA, and will help individuals conducting surveillance in regions with circulating H5N1 viruses to recognize key residues that predict the pandemic potential of isolates, which will inform the development, production and distribution of effective countermeasures.


Nature | 2013

Characterization of H7N9 influenza A viruses isolated from humans.

Tokiko Watanabe; Maki Kiso; Satoshi Fukuyama; Noriko Nakajima; Masaki Imai; S. Yamada; Shin Murakami; Seiya Yamayoshi; Kiyoko Iwatsuki-Horimoto; Yoshihiro Sakoda; Emi Takashita; Ryan McBride; Takeshi Noda; Masato Hatta; Hirotaka Imai; Dongming Zhao; Noriko Kishida; Masayuki Shirakura; Robert P. de Vries; Shintaro Shichinohe; Masatoshi Okamatsu; Tomokazu Tamura; Yuriko Tomita; Naomi Fujimoto; Kazue Goto; Hiroaki Katsura; Eiryo Kawakami; Izumi Ishikawa; Shinji Watanabe; Mutsumi Ito

Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission, and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.


PLOS Pathogens | 2010

Characterization of oseltamivir-resistant 2009 H1N1 pandemic influenza A viruses.

Maki Kiso; Kyoko Shinya; Masayuki Shimojima; Ryo Takano; Kei Takahashi; Hiroaki Katsura; Satoshi Kakugawa; Mai thi Quynh Le; Makoto Yamashita; Yousuke Furuta; Makoto Ozawa; Yoshihiro Kawaoka

Influenza viruses resistant to antiviral drugs emerge frequently. Not surprisingly, the widespread treatment in many countries of patients infected with 2009 pandemic influenza A (H1N1) viruses with the neuraminidase (NA) inhibitors oseltamivir and zanamivir has led to the emergence of pandemic strains resistant to these drugs. Sporadic cases of pandemic influenza have been associated with mutant viruses possessing a histidine-to-tyrosine substitution at position 274 (H274Y) in the NA, a mutation known to be responsible for oseltamivir resistance. Here, we characterized in vitro and in vivo properties of two pairs of oseltaimivir-sensitive and -resistant (possessing the NA H274Y substitution) 2009 H1N1 pandemic viruses isolated in different parts of the world. An in vitro NA inhibition assay confirmed that the NA H274Y substitution confers oseltamivir resistance to 2009 H1N1 pandemic viruses. In mouse lungs, we found no significant difference in replication between oseltamivir-sensitive and -resistant viruses. In the lungs of mice treated with oseltamivir or even zanamivir, 2009 H1N1 pandemic viruses with the NA H274Y substitution replicated efficiently. Pathological analysis revealed that the pathogenicities of the oseltamivir-resistant viruses were comparable to those of their oseltamivir-sensitive counterparts in ferrets. Further, the oseltamivir-resistant viruses transmitted between ferrets as efficiently as their oseltamivir-sensitive counterparts. Collectively, these data indicate that oseltamivir-resistant 2009 H1N1 pandemic viruses with the NA H274Y substitution were comparable to their oseltamivir-sensitive counterparts in their pathogenicity and transmissibility in animal models. Our findings highlight the possibility that NA H274Y-possessing oseltamivir-resistant 2009 H1N1 pandemic viruses could supersede oseltamivir-sensitive viruses, as occurred with seasonal H1N1 viruses.


Journal of Virology | 2012

Enhanced Growth of Influenza Vaccine Seed Viruses in Vero Cells Mediated by Broadening the Optimal pH Range for Virus Membrane Fusion

Shin Murakami; Taisuke Horimoto; Mutsumi Ito; Ryo Takano; Hiroaki Katsura; Masayuki Shimojima; Yoshihiro Kawaoka

ABSTRACT Vaccination is one of the most effective preventive measures to combat influenza. Prospectively, cell culture-based influenza vaccines play an important role for robust vaccine production in both normal settings and urgent situations, such as during the 2009 pandemic. African green monkey Vero cells are recommended by the World Health Organization as a safe substrate for influenza vaccine production for human use. However, the growth of influenza vaccine seed viruses is occasionally suboptimal in Vero cells, which places limitations on their usefulness for enhanced vaccine production. Here, we present a strategy for the development of vaccine seed viruses with enhanced growth in Vero cells by changing an amino acid residue in the stem region of the HA2 subunit of the hemagglutinin (HA) molecule. This mutation optimized the pH for HA-mediated membrane fusion in Vero cells and enhanced virus growth 100 to 1,000 times in the cell line, providing a promising strategy for cell culture-based influenza vaccines.


Nature Communications | 2015

Multi-spectral fluorescent reporter influenza viruses (Color-flu) as powerful tools for in vivo studies

Satoshi Fukuyama; Hiroaki Katsura; Dongming Zhao; Makoto Ozawa; Tomomi Ando; Jason E. Shoemaker; Izumi Ishikawa; S. Yamada; Gabriele Neumann; Shinji Watanabe; Hiroaki Kitano; Yoshihiro Kawaoka

Seasonal influenza A viruses cause annual epidemics of respiratory disease; highly pathogenic avian H5N1 and the recently emerged H7N9 viruses cause severe infections in humans, often with fatal outcomes. Although numerous studies have addressed the pathogenicity of influenza viruses, influenza pathogenesis remains incompletely understood. Here we generate influenza viruses expressing fluorescent proteins of different colours (‘Color-flu’ viruses) to facilitate the study of viral infection in in vivo models. On adaptation to mice, stable expression of the fluorescent proteins in infected animals allows their detection by different types of microscopy and by flow cytometry. We use this system to analyse the progression of viral spread in mouse lungs, for live imaging of virus-infected cells, and for differential gene expression studies in virus antigen-positive and virus antigen-negative live cells in the lungs of Color-flu-infected mice. Collectively, Color-flu viruses are powerful tools to analyse virus infections at the cellular level in vivo to better understand influenza pathogenesis.


Scientific Reports | 2013

Protective efficacy of orally administered, heat-killed Lactobacillus pentosus b240 against influenza A virus

Maki Kiso; Ryo Takano; Saori Sakabe; Hiroaki Katsura; Kyoko Shinya; Ryuta Uraki; Shinji Watanabe; Hiroshi Saito; Masamichi Toba; Noriyuki Kohda; Yoshihiro Kawaoka

Influenza A(H1N1)pdm virus caused the first human pandemic of the 21st century. Although various probiotic Lactobacillus species have been shown to have anti-microbial effects against pneumonia-inducing pathogens, the prophylactic efficacy and mechanisms behind their protection remain largely unknown. Here, we evaluated the prophylactic efficacy of heat-killed Lactobacillus pentosus b240 against lethal influenza A(H1N1)pdm virus infection in a mouse model. To further define the protective responses induced by b240, we performed virologic, histopathologic, and transcriptomic analyses on the mouse lungs. Although we did not observe an appreciable effect of b240 on virus growth, cytokine production, or histopathology, gene expressional analysis revealed that oral administration of b240 differentially regulates antiviral gene expression in mouse lungs. Our results unveil the possible mechanisms behind the protection mediated by b240 against influenza virus infection and provide new insights into probiotic therapy.


Virus Research | 2011

Structure-based design of NS2 mutants for attenuated influenza A virus vaccines

Hatice Akarsu; Kiyoko Iwatsuki-Horimoto; Takeshi Noda; Eiryo Kawakami; Hiroaki Katsura; Florence Baudin; Taisuke Horimoto; Yoshihiro Kawaoka

We previously characterised the matrix 1 (M1)-binding domain of the influenza A virus NS2/nuclear export protein (NEP), reporting a critical role for the tryptophan (W78) residue that is surrounded by a cluster of glutamate residues in the C-terminal region that interacts with the M1 protein (Akarsu et al., 2003). To gain further insight into the functional role of this interaction, here we used reverse genetics to generate a series of A/WSN/33 (H1N1)-based NS2/NEP mutants for W78 or the C-terminal glutamate residues and assessed their effect on virus growth. We found that simultaneous mutations at three positions (E67S/E74S/E75S) of NS2/NEP were important for inhibition of influenza viral polymerase activity, although the W78S mutant and other glutamate mutants with single substitutions were not. In addition, double and triple substitutions in the NS2/NEP glutamine residues, which resulted in the addition of seven amino acids to the C-terminus of NS1 due to gene overlapping, resulted in virus attenuation in mice. Animal studies with this mutant suggest a potential benefit to incorporating these NS mutations into live vaccines.


Journal of Virology | 2012

A Replication-Incompetent PB2-Knockout Influenza A Virus Vaccine Vector

Sylvia T. Victor; Shinji Watanabe; Hiroaki Katsura; Makoto Ozawa; Yoshihiro Kawaoka

ABSTRACT Vaccination is the primary form of protection from influenza virus infection. We recently developed a replication-incompetent PB2-knockout (PB2-KO) influenza virus that possesses a reporter gene (the green fluorescent protein gene) in the coding region of the PB2 segment. This virus replicated to high titers in PB2-expressing, but not unmodified, cells, suggesting its potential safety and feasibility as a vaccine. Here, we tested its efficacy in a murine model. The levels of IgG and IgA antibodies against influenza virus in sera, nasal washes, and bronchoalveolar lavage fluids of mice immunized with the PB2-KO virus were higher than those induced by a conventional inactivated vaccine. All PB2-KO virus-immunized mice survived challenges with lethal doses of influenza virus. Moreover, importantly, mice immunized with the PB2-KO virus produced antibodies against the reporter protein, suggesting that the PB2-KO virus has potential as a multivalent vaccine to combat infection with not only influenza virus but also other pathogens.


Vaccine | 2012

A replication-incompetent virus possessing an uncleavable hemagglutinin as an influenza vaccine.

Hiroaki Katsura; Kiyoko Iwatsuki-Horimoto; Satoshi Fukuyama; Shinji Watanabe; Saori Sakabe; Yasuko Hatta; Shin Murakami; Masayuki Shimojima; Taisuke Horimoto; Yoshihiro Kawaoka

Vaccination is one of the most effective measures to protect against influenza virus infection. Inactivated and live-attenuated influenza vaccines are available; however, their efficacy is suboptimal. To develop a safe and more immunogenic vaccine, we produced a novel replication-incompetent influenza virus that possesses uncleavable hemagglutinin (HA) and tested its vaccine potential. The uncleavable HA was engineered by substituting the arginine at the C-terminus of HA1 with threonine, which prevents cleavage of HA into its HA1 and HA2 subunits, preventing fusion between the host and viral membranes. Although this fusion-deficient HA influenza virus that possesses uncleavable HA (uncleavable HA virus) could undergo multiple cycles of replication in only wild-type HA-expressing cells, it could infect normal cells and express viral proteins in infected cells, but could not generate infectious virus from infected cells due to the uncleavable HA. When C57BL/6 mice were intranasally immunized with the uncleavable HA virus, influenza-specific IgG and IgA antibodies were detected in nasal wash and bronchoalveolar lavage samples and in serum. In addition, influenza-specific CD8(+) T cells accumulated in the lungs of these mice. Moreover, mice immunized with the uncleavable HA virus were protected against a challenge of lethal doses of influenza virus, unlike mice immunized with a formalin-inactivated virus. These findings demonstrate that this fusion-deficient virus, which possesses uncleavable HA, is a suitable influenza vaccine candidate.


PLOS Pathogens | 2015

An Ultrasensitive Mechanism Regulates Influenza Virus-Induced Inflammation

Jason E. Shoemaker; Satoshi Fukuyama; Amie J. Eisfeld; Dongming Zhao; Eiryo Kawakami; Saori Sakabe; Tadashi Maemura; Takeo Gorai; Hiroaki Katsura; Yukiko Muramoto; Shinji Watanabe; Tokiko Watanabe; Ken Fuji; Yukiko Matsuoka; Hiroaki Kitano; Yoshihiro Kawaoka

Influenza viruses present major challenges to public health, evident by the 2009 influenza pandemic. Highly pathogenic influenza virus infections generally coincide with early, high levels of inflammatory cytokines that some studies have suggested may be regulated in a strain-dependent manner. However, a comprehensive characterization of the complex dynamics of the inflammatory response induced by virulent influenza strains is lacking. Here, we applied gene co-expression and nonlinear regression analysis to time-course, microarray data developed from influenza-infected mouse lung to create mathematical models of the host inflammatory response. We found that the dynamics of inflammation-associated gene expression are regulated by an ultrasensitive-like mechanism in which low levels of virus induce minimal gene expression but expression is strongly induced once a threshold virus titer is exceeded. Cytokine assays confirmed that the production of several key inflammatory cytokines, such as interleukin 6 and monocyte chemotactic protein 1, exhibit ultrasensitive behavior. A systematic exploration of the pathways regulating the inflammatory-associated gene response suggests that the molecular origins of this ultrasensitive response mechanism lie within the branch of the Toll-like receptor pathway that regulates STAT1 phosphorylation. This study provides the first evidence of an ultrasensitive mechanism regulating influenza virus-induced inflammation in whole lungs and provides insight into how different virus strains can induce distinct temporal inflammation response profiles. The approach developed here should facilitate the construction of gene regulatory models of other infectious diseases.

Collaboration


Dive into the Hiroaki Katsura's collaboration.

Top Co-Authors

Avatar

Yoshihiro Kawaoka

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Shinji Watanabe

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriele Neumann

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryo Takano

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge