Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroaki Setoguchi is active.

Publication


Featured researches published by Hiroaki Setoguchi.


Molecular Ecology | 2006

Refugia of Potentilla matsumurae (Rosaceae) located at high mountains in the Japanese archipelago

Hajime Ikeda; Kei Senni; Noriyuki Fujii; Hiroaki Setoguchi

Molecular phylogeographic studies have revealed the genetic patterns and glacial–interglacial history of many plant and animal species. To infer the Quaternary history of alpine plants in the Japanese archipelago, which is poorly known, we investigated 203 individuals of Potentilla matsumurae and its varieties from 22 populations. We found 11 haplotypes based on approximately 1400 bp of two intergenetic spacers in chloroplast DNA (trnT‐L and rpl20–rps20). The distribution of these haplotypes was geographically structured, which was supported by haplotype composition, principal component analysis, and unweighted pair group method with arithmetic mean (UPGMA), and NST (0.71) was significantly greater than GST (0.68). In addition to the positive correlation between genetic and geographic distance (Mantel test, r = 0.497, P < 0.001), an abrupt genetic change was detected between mountains in central Honshu and the Tohoku region. This genetic boundary was further supported by analysis of molecular variance (amova), and high variation (54.0%) was explained by differences on either side of this boundary. Moreover, haplotypes in central Honshu were thought to have diverged, based on an outgroup comparison. These results suggest that mountains in central Honshu served as refugia during the Quaternary climatic oscillation, although the results could not reveal the history of most mountains in the Tohoku region and Hokkaido. Nevertheless, following floristic studies, our results indicate that alpine plants in Japan experienced a history different from that in Europe; i.e. they retreated into refugia during warm periods to avoid forest development, rather than glaciers.


Molecular Ecology | 2008

Consistent geographic structure among multiple nuclear sequences and cpDNA polymorphisms of Cardamine nipponica Franch. et Savat. (Brassicaceae)

Hajime Ikeda; Kei Senni; Noriyuki Fujii; Hiroaki Setoguchi

Molecular phylogeography has inferred the history of differentiation between regions and/or among populations following the Pleistocene climatic oscillations, mostly based on the genetic structure of organelle DNA. However, such genetic structure only reflects the history of a single gene, and studies based on single‐copy genes of nuclear DNA (nDNA) are required for phylogeography, although their efficiency remains unclear. To examine the utility of nDNA loci, the genetic structures of three genes from Cardamine nipponica, which is closely related to the model species Arabidopsis thaliana, were elucidated: the nDNA genes DET1, PHYA, PHYE, as well as chloroplast DNA (cpDNA). In 279 individuals collected from throughout the range of the species, strong genetic differentiation between northern and central Japan was found for all loci. This result suggested that populations in central Japan experienced a different history from those in northern Japan during the Pleistocene climatic oscillations. In addition, the evidence of refugia at the edges of the distribution, where the genetic structure was less influenced by colonization following range expansion, was shown for several loci. The specific genetic structure within the southernmost populations of northern Japan suggested that this region was also isolated during range expansion. Hence, the consistent history among loci and a more detailed history from several loci indicated that cpDNA can represent the history of vicariance and demonstrated the efficiency of single‐copy nuclear genes in phylogeography.


Plant Systematics and Evolution | 2008

Survival and genetic divergence of an arctic-alpine plant, Diapensia lapponica subsp. obovata (Fr. Schm.) Hultén (Diapensiaceae), in the high mountains of central Japan during climatic oscillations

Hajime Ikeda; Kei Senni; Noriyuki Fujii; Hiroaki Setoguchi

SummaryPrevious phylogeographic studies of arctic-alpine plants have partly elucidated that alpine areas at the southernmost edges of their distribution have been one of the most important areas for the survival of populations through Quaternary climatic oscillations. To reveal the genetic structure of arctic-alpine plants near the southern edge of their range in East Asia, 159 samples of Diapensia lapponica subsp. obovata (Diapensiaceae) were collected from 22 populations in Japan. Based on 1,134 bp of chloroplast DNA (cpDNA), we determined 10 haplotypes. Neighbor-joining (NJ) analysis, including D. lapponica from Sweden and Schizocodon soldanelloides, revealed that all haplotypes in Japan were monophyletic. Genetic differentiation between populations of central Honshu and northern Japan was strongly supported by the NJ tree (100%), analysis of molecular variance (AMOVA, 68%), and Monmonier’s algorithm (>95%). The most ancestral haplotype rarely occurred in Japan, which implied that the extant genetic structure was not caused by genetic divergence during colonization. Thus, these results suggest that the arctic-alpine plant D. lapponica subsp. obovata survived climatic oscillations in central Honshu. This finding supports the hypothesis that high mountains in temperate regions were important for survival of arctic-alpine plants during Quaternary climatic oscillations.


Journal of Plant Research | 1999

Molecular Phylogeny of Rhizophoraceae Based on rbcL Gene Sequences

Hiroaki Setoguchi; Keiko Kosuge; Hiroshi Tobe

rbcL sequences to clarify the inter- and intrarelationships of Rhizophoraceae which have been variously discussed. The analyses included 12 of the 15 genera of Rhizophoraceae (4/7 of Macarisieae, 4/4 of Gynotrocheae, and 4/4 of Rhizophoreae) and a few putatively related taxa, including two of the four genera of Anisophylleaceae. The most parsimonious trees supported the monophyly of Rhizophoraceae as well as each of the three traditionally recognized tribes Macarisieae, Gynotrocheae, and Rhizophoreae. The family Rhizophoraceae is a sister taxon to Erythroxylum (Erythroxylaceae) and is further closely related to Byrsonima (Malpighiaceae), Passiflora (Passifloraceae), Turnera (Turneraceae), Ochna (Ochnaceae), Drypetes (Euphorbiaceae), and Humiria (Humiriaceae). Anisophylleaceae, which have often been included in Rhizophoraceae as a tribe or subfamily, are placed in a common clade with Begonia (Begoniaceae), Cucurbita (Cucurbitaceae), Coriaria (Coriariaceae), Corynocarpus (Corynocarpaceae), Datisca (Datiscaceae), Tetrameles (Datiscaceae), and Octomeles (Datiscaceae). Within Rhizophoraceae the mangrove tribe Rhizophoreae is sister to the inland tribe Gynotrocheae, with inland tribe Macarisieae positioned as a sister taxon to these two tribes. This pattern of relationships within the family basically agrees with those suggested by cladistic analyses based on morphological characters, except that Gynotrocheae are monophyletic with Crossostylis as a derived taxon within the tribe in the present study. Based on this cladogram for Rhizophoraceae, we discuss evolutionary trends of a few ecological and morphological characters, including the formation of aerial roots and the ovary position.


Molecular Biology and Evolution | 2009

Application of the Isolation with Migration Model Demonstrates the Pleistocene Origin of Geographic Differentiation in Cardamine nipponica (Brassicaceae), an Endemic Japanese Alpine Plant

Hajime Ikeda; Noriyuki Fujii; Hiroaki Setoguchi

The Pleistocene was characterized by a cyclic pattern of cold and warm climatic periods, or climatic oscillations, which caused fluctuations in the distributions of organisms. This resulted in drastic changes in demography, thereby accelerating the genetic divergence of populations. Phylogeographic studies have elucidated the history of populations during the Pleistocene. However, given the lack of model-based analysis of population histories, previous phylogeographic studies could not adequately evaluate the effect of these Pleistocene climatic oscillations on the genetic divergence and migration events between populations. Populations of Japanese alpine plants in central and northern Japan are highly differentiated, and a history of isolation between regions during the Pleistocene was inferred. Using sequences of 10 nuclear genes (ca. approximately 7,000 bp in total) from Cardamine nipponica (Brassicaceae), we applied an isolation with migration (IM) model to test the significance of the isolation history between central and northern Japan and to assess whether range shifts during the Pleistocene climatic oscillations were involved in the genetic differentiation between regions. The estimated divergence time indicates that the two regions were separated about 100,000-110,000 years ago. The exclusive occurrence of closely related haplotypes within each region (parsimony network) and the high level of genetic differentiation between the regions (mean F(ST) = 0.417) indicate that genetic divergence occurred following the isolation of the two regions. Therefore, the genetic differentiation between regions was shaped during the Pleistocene, especially during the last glacial and inter and postglacial periods. In addition, our multilocus analysis showed that populations in central and northern Japan were completely isolated after they split. Geographic separation and subsequent restricted migration events among mountains could explain this isolation history between regions. Furthermore, genetic drift in the reduced populations would remove evidence of occasional migration, emphasizing the isolation history. Therefore, our application of a demographic model demonstrated the Pleistocene origin of geographic differentiation statistically and provided a plausible migration history for C. nipponica.


Genetics | 2009

Molecular Evolution of Phytochromes in Cardamine nipponica (Brassicaceae) Suggests the Involvement of PHYE in Local Adaptation

Hajime Ikeda; Noriyuki Fujii; Hiroaki Setoguchi

Given that plants are sessile organisms, traits involved in adapting to local environments and/or in monitoring the surrounding environment, such as having photoreceptors, are significant targets of natural selection in plant evolution. To assess the intraspecific adaptive evolution of photoreceptors, we investigated sequence variations in four phytochrome genes (PHYA–C and PHYE) of Cardamine nipponica (Brassicaceae), an endemic Japanese alpine plant. The genealogies of haplotypes and genetic differentiations showed inconsistent patterns of evolution across phytochromes, suggesting that evolutionary forces were distinct in phytochromes of C. nipponica. An overall low level of nucleotide diversity in phytochrome genes suggests that the evolution of phytochromes is constrained by purifying selection within C. nipponica, which is consistent with previous findings on phytochromes. However, PHYE alone exhibited a non-neutral pattern of polymorphisms (Tajimas D = 1.91, P < 0.05) and an accumulation of nonsynonymous substitutions between central and northern Japan. In particular, the PHY domain, which plays an important role in stabilizing the active form (Pfr) of phytochromes, harbored a specific nonsynonymous fixation between regions. Thus, our finding indicates that local adaptation is involved in the evolution of PHYE in C. nipponica and is the first to suggest the involvement of PHYE in local adaptation.


Molecular Ecology | 2010

Natural selection on PHYE by latitude in the Japanese archipelago: insight from locus specific phylogeographic structure in Arcterica nana (Ericaceae)

Hajime Ikeda; Hiroaki Setoguchi

Phytochromes play a key role in allowing plants to monitor their surrounding environment and, conversely, adaptation to local environments has driven the evolutionary history of phytochromes. As a result of natural selection, polymorphisms in phytochrome genes would thus be expected to exhibit locus‐specific phylogeographic structure. To evaluate this hypothesis, we conducted a phylogeographic investigation based on four nuclear genes, including two phytochrome genes (PHYB and PHYE) using 155 samples of Arcterica nana from the entire range of the Japanese archipelago. Bayesian clustering revealed geographic differentiation between northern and southern Japan when all four genes were included. However, this geographic differentiation is inconsistent with previously reported genetic structure of genome‐wide polymorphisms based on amplified fragment length polymorphisms, as these did not show geographic differentiation throughout the Japanese archipelago. In contrast, the north–south differentiation was not apparent when PHYE was excluded. This indicates that PHYE alone could be responsible for the north–south differentiation (FCT = 0.15, P < 0.001). Furthermore, a single nonsynonymous polymorphism (C360T) strongly contributed to geographic differentiation (FCT = 0.57, P < 0.001) and its corresponding amino acid replacement (P120L) was significantly under positive selection based on maximum likelihood analysis (P = 0.98). Consequently, the locus‐specific geographic differentiation in PHYE could be caused by natural selection, suggesting the involvement of PHYE in local adaptation between populations of A. nana in northern and southern Japan. This finding is consistent with a previous study on Cardamine nipponica, indicating the importance of PHYE for local adaptation in Japanese alpine plants.


American Journal of Botany | 2010

Multiple spatial scale patterns of genetic diversity in riparian populations of Ainsliaea faurieana (Asteraceae) on Yakushima Island, Japan

Yuki Mitsui; Yuji Isagi; Hiroaki Setoguchi

Habitat and geographical features of river systems strongly influence gene flow and spatial genetic patterning in riparian plant populations. We investigated the patterns of genetic diversity within and among populations of Ainsliaea faurieana relative to different spatial conditions (along a river, among rivers, and among regions on an island), based on nuclear and chloroplast microsatellite DNA variations. Within an individual river system, we found higher haplotype diversities in downstream populations, and in a Bayesian analysis of recent migration, we detected unidirectional gene movements from upstream to downstream, indicating water-mediated dispersal along the river. Mantel tests detected no isolation-by-distance in genetic variation, suggesting the maintenance of a metapopulation with wide-range seed dispersal by water. Moreover, the observed high level of genetic differentiation, especially in the cpDNA (F(ST) = 0.539), indicated a metapopulation structure with frequent extinction and colonization. On a larger scale, we found high population differentiation and clear genetic structuring among regions, suggesting that gene flow was restricted by geographical features (mountains separating river systems) for relatively long periods. Our findings of genetic structures based on different spatial conditions elucidated patterns and ranges of historical and contemporary gene movement in a plant species that is persistent in extremely disturbed riparian environments.


New Phytologist | 2012

Pleistocene climatic oscillations and the speciation history of an alpine endemic and a widespread arctic‐alpine plant

Hajime Ikeda; Tor Carlsen; Noriyuki Fujii; Christian Brochmann; Hiroaki Setoguchi

Even in cases in which geographic isolation appears to have driven the speciation of regional endemics, range shifts during the Pleistocene climatic oscillations may also have influenced their evolutionary history. Elucidating speciation history can provide novel insights into evolutionary dynamics following climatic oscillations. We demonstrated a sister relationship between the Japanese alpine endemic Cardamine nipponica and the currently allopatric, widespread arctic-alpine Cardamine bellidifolia (Brassicaceae) based on internal transcribed spacer (ITS) sequences and 10 other nuclear genes. Speciation history was inferred using demographic parameters under the isolation with migration model. The estimated demographic parameters showed that the population size of C. nipponica was similar to that of C. bellidifolia and that gene flow occurred exclusively from C. nipponica to C. bellidifolia after speciation. The inferred speciation history, which included gene flow, suggests that geographic barriers between the peripheral C. nipponica and the widespread C. bellidifolia were reduced during the Pleistocene. The asymmetric introgression implies that genetic isolation may have been involved in the speciation of C. nipponica. Our results suggest that even currently allopatric species may not have diverged solely under geographic isolation, and that their evolutionary history may have been influenced by Pleistocene range dynamics.


American Journal of Botany | 2008

Genetic diversity and geographical structure of the pitcher plant Nepenthes vieillardii in New Caledonia: A chloroplast DNA haplotype analysis

Kaoruko Kurata; Tanguy Jaffré; Hiroaki Setoguchi

Among the many species that grow in New Caledonia, the pitcher plant Nepenthes vieillardii (Nepenthaceae) has a high degree of morphological variation. In this study, we present the patterns of genetic differentiation of pitcher plant populations based on chloroplast DNA haplotype analysis using the sequences of five spacers. We analyzed 294 samples from 16 populations covering the entire range of the species, using 4660 bp of sequence. Our analysis identified 17 haplotypes, including one that is widely distributed across the islands, as well as regional and private haplotypes. The greatest haplotype diversity was detected on the eastern coast of the largest island and included several private haplotypes, while haplotype diversity was low in the southern plains region. The parsimony network analysis of the 17 haplotypes suggested that the genetic divergence is the result of long-term isolation of individual populations. Results from a spatial analysis of molecular variance and a cluster analysis suggest that the plants once covered the entire serpentine area of New Caledonia and that subsequent regional fragmentation resulted in the isolation of each population and significantly restricted seed flow. This isolation may have been an important factor in the development of the morphological and genetic variation among pitcher plants in New Caledonia.

Collaboration


Dive into the Hiroaki Setoguchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuo Oginuma

Kochi Women's University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge