Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hirokazu Kouguchi is active.

Publication


Featured researches published by Hirokazu Kouguchi.


Journal of Biological Chemistry | 2007

A Novel Subunit Structure of Clostridium botulinum Serotype D Toxin Complex with Three Extended Arms

Kimiko Hasegawa; Toshihiro Watanabe; Tomonori Suzuki; Akihito Yamano; Tetsuo Oikawa; Yasuhiko Sato; Hirokazu Kouguchi; Tohru Yoneyama; Koichi Niwa; Toshihiko Ikeda; Tohru Ohyama

The botulinum neurotoxins (BoNTs) are the most potent toxins known in nature, causing the lethal disease known as botulism in humans and animals. The BoNTs act by inhibiting neurotransmitter release from cholinergic synapses. Clostridium botulinum strains produce large BoNTs toxin complexes, which include auxiliary non-toxic proteins that appear not only to protect BoNTs from the hostile environment of the digestive tract but also to assist BoNT translocation across the intestinal mucosal layer. In this study, we visualize for the first time a series of botulinum serotype D toxin complexes using negative stain transmission electron microscopy (TEM). The complexes consist of the 150-kDa BoNT, 130-kDa non-toxic non-hemagglutinin (NTNHA), and three kinds of hemagglutinin (HA) subcomponents: 70-kDa HA-70, 33-kDa HA-33, and 17-kDa HA-17. These components assemble sequentially to form the complex. A novel TEM image of the mature L-TC revealed an ellipsoidal-shaped structure with “three arms” attached. The “body” section was comprised of a single BoNT, a single NTNHA and three HA-70 molecules. The arm section consisted of a complex of HA-33 and HA-17 molecules. We determined the x-ray crystal structure of the complex formed by two HA-33 plus one HA-17. On the basis of the TEM image and biochemical results, we propose a novel 14-mer subunit model for the botulinum toxin complex. This unique model suggests how non-toxic components make up a “delivery vehicle” for BoNT.


Fems Immunology and Medical Microbiology | 2011

HA-33 facilitates transport of the serotype D botulinum toxin across a rat intestinal epithelial cell monolayer.

Hiroaki Ito; Yoshimasa Sagane; Keita Miyata; Ken Inui; Tomohito Matsuo; Ryohta Horiuchi; Toshihiko Ikeda; Tomonori Suzuki; Kimiko Hasegawa; Hirokazu Kouguchi; Keiji Oguma; Koichi Niwa; Tohru Ohyama; Toshihiro Watanabe

A large size botulinum toxin complex (L-TC) is composed of a single neurotoxin (BoNT), a single nontoxic nonhaemagglutinin (NTNHA) and a haemagglutinin (HA) complex. The HA complex is comprised of three HA-70 molecules and three arm structures of HA-33/HA-17 that consist of two HA-33 and a single HA-17. In addition to the mature L-TC, smaller TCs are present in cultures: M-TC (BoNT/NTNHA), M-TC/HA-70 and immature L-TCs with fewer HA-33/HA-17 arms than mature L-TC. Because L-TC displays higher oral toxicity than pure BoNT, it was presumed that nontoxic proteins are critical for food poisoning. In this study, the absorption of TCs across intestinal epithelial cells was assessed by examining the cell binding and monolayer transport of serotype D toxins in the rat intestinal epithelial cell line IEC-6. All TCs, including pure BoNT, displayed binding and transport, with mature L-TC showing the greatest potency. Inhibition experiments using antibodies revealed that BoNT, HA-70 and HA-33 could be responsible for the binding and transport. The findings here indicate that all TCs can transport across the cell layer via a sialic acid-dependent process. Nonetheless, binding and transport markedly increased with number of HA-33/HA-17 arms in the TC. We therefore conclude that the HA-33/HA-17 arm is not necessarily required for, but facilitates, transport of botulinum toxin complexes.


Biochemical and Biophysical Research Communications | 2009

Expression and stability of the nontoxic component of the botulinum toxin complex

Keita Miyata; Tohru Yoneyama; Tomonori Suzuki; Hirokazu Kouguchi; Ken Inui; Koichi Niwa; Toshihiro Watanabe; Tohru Ohyama

Clostridium botulinum produces botulinum neurotoxin (BoNT) as a large toxin complex associated with nontoxic-nonhemagglutinin (NTNHA) and/or hemagglutinin components. In the present study, high-level expression of full-length (1197 amino acids) rNTNHA from C. botulinum serotype D strain 4947 (D-4947) was achieved in an Escherichia coli system. Spontaneous nicking of the rNTNHA at a specific site was observed during long-term incubation in the presence of protease inhibitors; this was also observed in natural NTNHA. The rNTNHA assembled with isolated D-4947 BoNT with molar ratio 1:1 to form a toxin complex. The reconstituted toxin complex exhibited dramatic resistance to proteolysis by pepsin or trypsin at high concentrations, despite the fact that the isolated BoNT and rNTNHA proteins were both easily degraded. We provide definitive evidence that NTNHA plays a crucial role in protecting BoNT, which is an oral toxin, from digestion by proteases common in the stomach and intestine.


Parasitology International | 2010

Primary alveolar echinococcosis: course of larval development and antibody responses in intermediate host rodents with different genetic backgrounds after oral infection with eggs of Echinococcus multilocularis.

Jun Matsumoto; Hirokazu Kouguchi; Yuzaburo Oku; Kinpei Yagi

We investigated parasite establishment, subsequent larval development and antibody responses in gerbils, cotton rats and 4 inbred mouse strains until 16 weeks post inoculation (p.i.) with 200 eggs of Echinococcus multilocularis. The rate of parasite establishment in the liver determined at 4 weeks p.i. was highest in DBA/2, followed by AKR/N, C57BL/10 and C57BL/6 mice, whereas gerbils harboured few parasite foci. The accurate number of liver lesions in cotton rats could not be determined due to rapid growth and advanced multivesiculation of the parasite observed at 2 weeks p.i. The course of larval development was most advanced in DBA/2 mice with mature protoscolex formation at 16 weeks p.i., followed by AKR/N harbouring metacestodes with sparsely distributed immature protoscoleces. On the other hand, C57BL/6 and C57BL/10 mice had infertile metacestodes without any protoscolex formation. The parasite growth in mice was totally slower than those in gerbils and cotton rats. Specific IgG and IgM responses against 3 types of native crude antigens of larval E. multilocularis were evaluated using somatic extracts of and vesicle fluid of metacestode, and somatic extracts from purified protoscoleces. The 4 mouse strains demonstrated basically similar kinetics with apparent IgG and IgM increases at 9 weeks p.i. and thereafter, except C57BL/10, exhibited higher levels of IgM against crude antigens at some time point of infection. On the other hand, a follow-up determination of specific IgG and IgM levels against recombinant antigens from larval E. multilocularis revealed that each mouse strain showed different antibody-level kinetics. The findings in the present study demonstrate that the course of host-parasite interactions in primary alveolar echinococcosis, caused by larval E. multilocularis, clearly varies among intermediate host rodents with different genetic backgrounds.


Vaccine | 2009

Evaluation of Echinococcus multilocularis tetraspanins as vaccine candidates against primary alveolar echinococcosis.

Zhisheng Dang; Kinpei Yagi; Yuzaburo Oku; Hirokazu Kouguchi; Kiichi Kajino; Junichi Watanabe; Jun Matsumoto; Ryo Nakao; Hiroyuki Wakaguri; Atsushi Toyoda; Chihiro Sugimoto

Echinococcus multilocularis causes an important zoonotic cestode disease. The metacestode stage proliferates in the liver of intermediate hosts including human and rodents and forms multiple cysts. Recently, members of a transmembrane protein tetraspanin (TSP) family have been used as vaccines against schistosomosis, or as diagnostic antigens for cysticercosis. In this study, seven tetraspanins of E. multilocularis, designated as TSP1 to TSP7, were evaluated for their protective potential against primary alveolar echinococcosis. The large extracellular loop (LEL) region of these tetraspanins was cloned from a full-length enriched cDNA library of E. multilocularis metacestodes and expressed in Escherichia coli as a fusion protein with thioredoxin. Recombinant TSPs were applied as vaccines against an E. multilocularis primary experimental infection in BALB/c mice. Cyst lesions in the livers of vaccinated and non-vaccinated mice were counted. The cyst lesion reduction rates induced by the seven tetraspanins in vaccinated vis-à-vis non-vaccinated mice were: 87.9%, 65.8%, 85.1%, 66.9%, 73.7%, 72.9% and 37.6%. Vaccination conferred protective rates to mice ranging from 0% (TSP5, 6, 7) to maximally 33% (TSP1, 3). The results indicated that recombinant tetraspanins have varying protective effects against primary alveolar echinococcosis and could be used in vaccine development.


Journal of Protein Chemistry | 1999

Dichain structure of botulinum neurotoxin: identification of cleavage sites in types C, D, and F neurotoxin molecules.

Yoshimasa Sagane; Toshihiro Watanabe; Hirokazu Kouguchi; Hiroyuki Sunagawa; Kaoru Inoue; Yukako Fujinaga; Keiji Oguma; Tohru Ohyama

Botulinum neurotoxin (NT) is synthesized by Clostridium botulinum as about a 150-kDa single-chain polypeptide. Posttranslational modification by bacterial or exogenous proteases yielded dichain structure which formed a disulfide loop connecting a 50-kDa light chain (Lc) and 100-kDa heavy chain (Hc). We determined amino acid sequences around cleavage sites in the loop region of botulinum NTs produced by type C strain Stockholm, type D strain CB16, and type F strain Oslo by analysis of the C-terminal sequence of Lc and the N-terminal sequence of Hc. Cleavage was found at one or two sites at Arg444/Ser445 and Lys449/Thr450 for type C, and Lys442/Asn443 and Arg445/Asp446 for type D, respectively. In culture fluid of mildly proteolytic strains of type C and D, therefore, NT exists as a mixture of at least three forms of nicked dichain molecules. The NT of type F proteolytic strain Oslo showed the Arg435 as a C-terminal residue of Lc and Ala440 as an N-terminal residue of Hc, indicating that the bacterial protease cuts twice (Arg435/Lys436 and Lys439/Ala440), with excision of four amino acid residues. The location of cleavage and number of amino acid residue excisions in the loop region could be explained by the degree of exposure of amino acid residues on the surface of the molecule, which was predicted as surface probability from the amino acid sequence. In addition, the observed correlation may also be adapted to the cleavage sites of the other botulinum toxin types, A, B, E, and G.


PLOS Neglected Tropical Diseases | 2012

A Pilot Study on Developing Mucosal Vaccine against Alveolar Echinococcosis (AE) Using Recombinant Tetraspanin 3: Vaccine Efficacy and Immunology

Zhisheng Dang; Kinpei Yagi; Yuzaburo Oku; Hirokazu Kouguchi; Kiichi Kajino; Jun Matsumoto; Ryo Nakao; Hiroyuki Wakaguri; Atsushi Toyoda; Hong Yin; Chihiro Sugimoto

Background We have previously evaluated the vaccine efficacies of seven tetraspanins of Echinococcus multilocularis (Em-TSP1–7) against alveolar echinococcosis (AE) by subcutaneous (s.c.) administration with Freunds adjuvant. Over 85% of liver cyst lesion number reductions (CLNR) were achieved by recombinant Em-TSP1 (rEm-TSP1) and -TSP3 (rEm-TSP3). However, to develop an efficient and safe human vaccine, the efficacy of TSP mucosal vaccines must be thoroughly evaluated. Methodology/Principal Findings rEm-TSP1 and -TSP3 along with nontoxic CpG ODN (CpG oligodeoxynucleotides) adjuvant were intranasally (i.n.) immunized to BALB/c mice and their vaccine efficacies were evaluated by counting liver CLNR (experiment I). 37.1% (p<0.05) and 62.1% (p<0.001) of CLNR were achieved by these two proteins, respectively. To study the protection-associated immune responses induced by rEm-TSP3 via different immunization routes (i.n. administration with CpG or s.c. immunization with Freunds adjuvant), the systemic and mucosal antibody responses were detected by ELISA (experiment II). S.c. and i.n. administration of rEm-TSP3 achieved 81.9% (p<0.001) and 62.8% (p<0.01) CLNR in the liver, respectively. Both the immunization routes evoked strong serum IgG, IgG1 and IgG2α responses; i.n. immunization induced significantly higher IgA responses in nasal cavity and intestine compared with s.c. immunization (p<0.001). Both immunization routes induced extremely strong liver IgA antibody responses (p<0.001). The Th1 and Th2 cell responses were assessed by examining the IgG1/IgG2α ratio at two and three weeks post-immunization. S.c. immunization resulted in a reduction in the IgG1/IgG2α ratio (Th1 tendency), whereas i.n. immunization caused a shift from Th1 to Th2. Moreover, immunohistochemistry showed that Em-TSP1 and -TSP3 were extensively located on the surface of E. multilocularis cysts, protoscoleces and adult worms with additional expression of Em-TSP3 in the inner part of protoscoleces and oncospheres. Conclusions Our study indicated that i.n. administration of rEm-TSP3 with CpG is able to induce both systemic and local immune responses and thus provides significant protection against AE.


Veterinary Microbiology | 2010

Sialic acid-dependent binding and transcytosis of serotype D botulinum neurotoxin and toxin complex in rat intestinal epithelial cells.

Koichi Niwa; Tohru Yoneyama; Hiroaki Ito; Maya Taira; Tomoyuki Chikai; Hirokazu Kouguchi; Tomonori Suzuki; Kimiko Hasegawa; Keita Miyata; Ken Inui; Toshihiko Ikeda; Toshihiro Watanabe; Tohru Ohyama

A large toxin complex (L-TC) produced by Clostridium botulinum is composed of neurotoxin (BoNT), non-toxic non-hemagglutinin (NTNHA) and hemagglutinin subcomponents (HA-70, -33 and -17). In animal botulism, BoNT or L-TC is internalized by intestinal epithelial cells. Previous studies showed that L-TC binds to intestinal cells via sugar chains on the cell surface, but the role of toxin binding to sugar chains in the toxin absorption from intestine is unclear. To clarify whether the toxin binding to sugar chains on intestinal cell surface leads to its transcytosis across the cells, we examined binding and permeation of BoNT and L-TC of C. botulinum serotype D strain 4947 to the rat intestinal epithelial cell line IEC-6 in semi-permeable filters in Transwell systems. Both BoNT and L-TC bound to and permeated the cell monolayers, with L-TC showing greater binding and permeation. In addition, both binding and permeation of toxins were potently inhibited by N-acetyl neuraminic acid in the cell culture medium or by treatment of the cells with neuraminidase. However, neither galactose, lactose nor N-acetyl galactosamine inhibited binding or permeation of toxins. These results support the idea that permeation of both BoNT and L-TC through the intestinal cell layer depends on prior binding to sialic acid on the cell surface. This is the first report demonstrating that the binding of botulinum toxins to cell surface sialic acid leads to their transcytosis through intestinal epithelial cells.


Journal of Protein Chemistry | 1999

Molecular composition of progenitor toxin produced by Clostridium botulinum type C strain 6813.

Toshihiro Watanabe; Yoshimasa Sagane; Hirokazu Kouguchi; Hiroyuki Sunagawa; Kaoru Inoue; Yukako Fujinaga; Keiji Oguma; Tohru Ohyama

The molecular composition of the purified progenitor toxin produced by a Clostridium botulinum type C strain 6813 (C-6813) was analyzed. The strain produced two types of progenitor toxins (M and L). Purified L toxin is formed by conjugation of the M toxin (composed of a neurotoxin and a non-toxic nonhemagglutinin) with additional hemagglutinin (HA) components. The dual cleavage sites at loop region of the dichain structure neurotoxin were identified between Arg444-Ser445 and Lys449-Thr450 by the analyses of C-terminal of the light chain and N-terminal of the heavy chain. Analysis of partial amino acid sequences of fragments generated by limited proteolysis of the neurotoxin has shown to that the neurotoxin protein produced by C-6813 was a hybrid molecule composed of type C and D neurotoxins as previously reported. HA components consist of a mixture of several subcomponents with molecular weights of 70-, 55-, 33-, 26~21- and 17-kDa. The N-terminal amino acid sequences of 70-, 55-, and 26~21-kDa proteins indicated that the 70-kDa protein was intact HA-70 gene product, and other 55- and 26~21-kDa proteins were derived from the 70-kDa protein by modification with proteolysis after translation of HA-70 gene. Furthermore, several amino acid differences were exhibited in the amino acid sequence as compared with the deduced sequence from the nucleotide sequence of the HA-70 gene which was common among type C (strains C-St and C-468) and D progenitor toxins (strains D-CB16 and D-1873).


Experimental Parasitology | 2010

Echinococcus multilocularis: Two-dimensional Western blotting method for the identification and expression analysis of immunogenic proteins in infected dogs

Hirokazu Kouguchi; Jun Matsumoto; Yoshinobu Katoh; Tomohiro Suzuki; Yuzaburo Oku; Kinpei Yagi

Domesticated dogs are an important potential source of Echinococcus multilocularis infection in humans; therefore, new molecular approaches for the prevention of the parasite infection in dogs need to be developed. Here, we identified and characterized an immunogenic protein of the parasite by using a proteome-based approach. The total protein extracted from protoscoleces was subjected to two-dimensional Western blotting with sera from dogs experimentally infected with E. multilocularis. Two protein spots showed major reactivity to the sera from infected dogs. The N-terminal amino acid sequences of these spots were identical to the deduced amino acid sequence of the product of the putative hsp20 gene. RT-PCR and Western blot analyses revealed that the putative hsp20 gene and its products were expressed in almost all stages of the parasite life cycle. Furthermore, recombinant hsp20 showed specific reactivity to the sera from infected dogs, suggesting that this molecule may facilitate the development of a practical vaccine.

Collaboration


Dive into the Hirokazu Kouguchi's collaboration.

Top Co-Authors

Avatar

Tohru Ohyama

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Toshihiro Watanabe

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Yoshimasa Sagane

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomonori Suzuki

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kimiko Hasegawa

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koichi Niwa

Tokyo University of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge