Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshimasa Sagane is active.

Publication


Featured researches published by Yoshimasa Sagane.


Plant Physiology | 2005

Molecular Characterization of Maize Acetylcholinesterase. A Novel Enzyme Family in the Plant Kingdom

Yoshimasa Sagane; Tomoyuki Nakagawa; Kosuke Yamamoto; Soichi Michikawa; Suguru Oguri; Yoshie S. Momonoki

Acetylcholinesterase (AChE) has been increasingly recognized in plants by indirect evidence of its activity. Here, we report purification and cloning of AChE from maize (Zea mays), thus providing to our knowledge the first direct evidence of the AChE molecule in plants. AChE was identified as a mixture of disulfide- and noncovalently linked 88-kD homodimers consisting of 42- to 44-kD polypeptides. The AChE hydrolyzed acetylthiocholine and propyonylthiocholine, but not S-butyrylthiocholine, and the AChE-specific inhibitor neostigmine bromide competitively inhibited its activity, implying that maize AChE functions in a similar manner as the animal enzyme. However, kinetic analyses indicated that maize AChE showed a lower affinity to substrates and inhibitors than animal AChE. The full-length cDNA of maize AChE gene is 1,471 nucleotides, which encode a protein having 394 residues, including a signal peptide. The deduced amino acid sequence exhibited no apparent similarity with that of the animal enzyme, although the catalytic triad was the same as in the animal AChE. In silico screening indicated that maize AChE homologs are widely distributed in plants but not in animals. These findings lead us to propose that the AChE family, as found here, comprises a novel family of the enzymes that is specifically distributed in the plant kingdom.


Journal of Biological Chemistry | 2004

Characterization of a novel acid phosphatase from embryonic axes of kidney bean exhibiting vanadate-dependent chloroperoxidase activity.

Tohru Yoneyama; Masae Shiozawa; Masao Nakamura; Tomonori Suzuki; Yoshimasa Sagane; Yoshinobu Katoh; Toshihiro Watanabe; Tohru Ohyama

A novel colorless acid phosphatase (KeACP), which was distinct from the kidney bean purple acid phosphatase, was purified to apparent homogeneity and cloned from embryonic axes of kidney bean (Phaseolus vulgaris L. Ohfuku) during germination. When orthovanadate (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{VO}_{4}^{-3}\) \end{document}) is added to the apo form of the enzyme, KeACP uniquely exhibits the chloroperoxidase activity with loss of phosphatase activity. This is the first demonstration that KeACP is a vanadate-dependent chloroperoxidase in plants to be characterized and suggests that KeACP may play a role in modifying a wide variety of chlorinated compounds that are present in higher plants. The enzyme is a dimer that presents three forms made up of the combination of the dominant 56-kDa and the minor 45-kDa subunits, and both subunits contain carbohydrate. The full-length cDNA of the KeACP gene is 1641 nucleotides, and this sequence is predicted to encode a protein having 457 amino acid residues (52,865 Da), including a signal peptide. The complete nucleotide sequence of the genomic DNA (3228 bp) of KeACP consists of seven exons and six introns. Northern blot analysis demonstrated that the KeACP gene was expressed specifically in embryonic axes of the kidney bean, and its expression coincided with elongation of the embryonic axis during germination.


Fems Immunology and Medical Microbiology | 2011

HA-33 facilitates transport of the serotype D botulinum toxin across a rat intestinal epithelial cell monolayer.

Hiroaki Ito; Yoshimasa Sagane; Keita Miyata; Ken Inui; Tomohito Matsuo; Ryohta Horiuchi; Toshihiko Ikeda; Tomonori Suzuki; Kimiko Hasegawa; Hirokazu Kouguchi; Keiji Oguma; Koichi Niwa; Tohru Ohyama; Toshihiro Watanabe

A large size botulinum toxin complex (L-TC) is composed of a single neurotoxin (BoNT), a single nontoxic nonhaemagglutinin (NTNHA) and a haemagglutinin (HA) complex. The HA complex is comprised of three HA-70 molecules and three arm structures of HA-33/HA-17 that consist of two HA-33 and a single HA-17. In addition to the mature L-TC, smaller TCs are present in cultures: M-TC (BoNT/NTNHA), M-TC/HA-70 and immature L-TCs with fewer HA-33/HA-17 arms than mature L-TC. Because L-TC displays higher oral toxicity than pure BoNT, it was presumed that nontoxic proteins are critical for food poisoning. In this study, the absorption of TCs across intestinal epithelial cells was assessed by examining the cell binding and monolayer transport of serotype D toxins in the rat intestinal epithelial cell line IEC-6. All TCs, including pure BoNT, displayed binding and transport, with mature L-TC showing the greatest potency. Inhibition experiments using antibodies revealed that BoNT, HA-70 and HA-33 could be responsible for the binding and transport. The findings here indicate that all TCs can transport across the cell layer via a sialic acid-dependent process. Nonetheless, binding and transport markedly increased with number of HA-33/HA-17 arms in the TC. We therefore conclude that the HA-33/HA-17 arm is not necessarily required for, but facilitates, transport of botulinum toxin complexes.


Development | 2010

Functional specialization of cellulose synthase genes of prokaryotic origin in chordate larvaceans

Yoshimasa Sagane; Karin Zech; Jean-Marie Bouquet; Martina Schmid; Ugur Bal; Eric M. Thompson

Extracellular matrices play important, but poorly investigated, roles in morphogenesis. Extracellular cellulose is central to regulation of pattern formation in plants, but among metazoans only tunicates are capable of cellulose biosynthesis. Cellulose synthase (CesA) gene products are present in filter-feeding structures of all tunicates and also regulate metamorphosis in the ascidian Ciona. Ciona CesA is proposed to have been acquired by lateral gene transfer from a prokaryote. We identified two CesA genes in the sister-class larvacean Oikopleura dioica. Each has a mosaic structure of a glycoslyltransferase 2 domain upstream of a glycosyl hydrolase family 6 cellulase-like domain, a signature thus far unique to tunicates. Spatial-temporal expression analysis revealed that Od-CesA1 produces long cellulose fibrils along the larval tail, whereas Od-CesA2 is responsible for the cellulose scaffold of the post-metamorphic filter-feeding house. Knockdown of Od-CesA1 inhibited cellulose production in the extracellular matrix of the larval tail. Notochord cells either failed to align or were misaligned, the tail did not elongate properly and tailbud embryos also exhibited a failure to hatch. Knockdown of Od-CesA2 did not elicit any of these phenotypes and instead caused a mild delay in pre-house formation. Phylogenetic analyses including Od-CesAs indicate that a single lateral gene transfer event from a prokaryote at the base of the lineage conferred biosynthetic capacity in all tunicates. Ascidians possess one CesA gene, whereas duplicated larvacean genes have evolved distinct temporal and functional specializations. Extracellular cellulose microfibrils produced by the pre-metamorphic Od-CesA1 duplicate have a role in notochord and tail morphogenesis.


Journal of Protein Chemistry | 1999

Dichain structure of botulinum neurotoxin: identification of cleavage sites in types C, D, and F neurotoxin molecules.

Yoshimasa Sagane; Toshihiro Watanabe; Hirokazu Kouguchi; Hiroyuki Sunagawa; Kaoru Inoue; Yukako Fujinaga; Keiji Oguma; Tohru Ohyama

Botulinum neurotoxin (NT) is synthesized by Clostridium botulinum as about a 150-kDa single-chain polypeptide. Posttranslational modification by bacterial or exogenous proteases yielded dichain structure which formed a disulfide loop connecting a 50-kDa light chain (Lc) and 100-kDa heavy chain (Hc). We determined amino acid sequences around cleavage sites in the loop region of botulinum NTs produced by type C strain Stockholm, type D strain CB16, and type F strain Oslo by analysis of the C-terminal sequence of Lc and the N-terminal sequence of Hc. Cleavage was found at one or two sites at Arg444/Ser445 and Lys449/Thr450 for type C, and Lys442/Asn443 and Arg445/Asp446 for type D, respectively. In culture fluid of mildly proteolytic strains of type C and D, therefore, NT exists as a mixture of at least three forms of nicked dichain molecules. The NT of type F proteolytic strain Oslo showed the Arg435 as a C-terminal residue of Lc and Ala440 as an N-terminal residue of Hc, indicating that the bacterial protease cuts twice (Arg435/Lys436 and Lys439/Ala440), with excision of four amino acid residues. The location of cleavage and number of amino acid residue excisions in the loop region could be explained by the degree of exposure of amino acid residues on the surface of the molecule, which was predicted as surface probability from the amino acid sequence. In addition, the observed correlation may also be adapted to the cleavage sites of the other botulinum toxin types, A, B, E, and G.


Journal of Protein Chemistry | 1999

Molecular composition of progenitor toxin produced by Clostridium botulinum type C strain 6813.

Toshihiro Watanabe; Yoshimasa Sagane; Hirokazu Kouguchi; Hiroyuki Sunagawa; Kaoru Inoue; Yukako Fujinaga; Keiji Oguma; Tohru Ohyama

The molecular composition of the purified progenitor toxin produced by a Clostridium botulinum type C strain 6813 (C-6813) was analyzed. The strain produced two types of progenitor toxins (M and L). Purified L toxin is formed by conjugation of the M toxin (composed of a neurotoxin and a non-toxic nonhemagglutinin) with additional hemagglutinin (HA) components. The dual cleavage sites at loop region of the dichain structure neurotoxin were identified between Arg444-Ser445 and Lys449-Thr450 by the analyses of C-terminal of the light chain and N-terminal of the heavy chain. Analysis of partial amino acid sequences of fragments generated by limited proteolysis of the neurotoxin has shown to that the neurotoxin protein produced by C-6813 was a hybrid molecule composed of type C and D neurotoxins as previously reported. HA components consist of a mixture of several subcomponents with molecular weights of 70-, 55-, 33-, 26~21- and 17-kDa. The N-terminal amino acid sequences of 70-, 55-, and 26~21-kDa proteins indicated that the 70-kDa protein was intact HA-70 gene product, and other 55- and 26~21-kDa proteins were derived from the 70-kDa protein by modification with proteolysis after translation of HA-70 gene. Furthermore, several amino acid differences were exhibited in the amino acid sequence as compared with the deduced sequence from the nucleotide sequence of the HA-70 gene which was common among type C (strains C-St and C-468) and D progenitor toxins (strains D-CB16 and D-1873).


Journal of Protein Chemistry | 2000

Characterization of nicking of the nontoxic-nonhemagglutinin components of Clostridium botulinum types C and D progenitor toxin.

Yoshimasa Sagane; Toshihiro Watanabe; Hirokazu Kouguchi; Hiroyuki Sunagawa; Kaoru Inoue; Yukako Fujinaga; Keiji Oguma; Tohru Ohyama

Clostridium botulinum C and D strains produce two types of progenitor toxins, M and L. Previously we reported that a 130-kDa nontoxic-nonhemagglutinin (NTNHA) component of the M toxin produced by type D strain CB16 was nicked at a unique site, leading to a 15-kDa N-terminal fragment and a 115-kDa C-terminal fragment. In this study, we identified the amino acid sequences around the nicking sites in the NTNHAs of the M toxins produced by C. botulinum type C and D strains by analysis of their C-terminal and N-terminal sequences and mass spectrometry. The C-terminus of the 15-kDa fragments was identified as Lys127 from these strains, indicating that a bacterial trypsin-like protease is responsible for the nicking. The 115-kDa fragment had mixtures of three different N-terminal amino acid sequences beginning with Leu135, Val139, and Ser141, indicating that 7–13 amino acid residues were deleted from the nicking site. The sequence beginning with Leu135 would also suggest cleavage by a trypsin-like protease, while the other two N-terminal amino acid sequences beginning with Val139 and Ser141 would imply proteolysis by an unknown protease. The nicked NTNHA forms a binary complex of two fragments that could not be separated without sodium dodecyl sulfate.


PLOS ONE | 2012

The Evolving Proteome of a Complex Extracellular Matrix, the Oikopleura House

Julia Hosp; Yoshimasa Sagane; Gemma Danks; Eric M. Thompson

Extracellular matrices regulate biological processes at the level of cells, tissues, and in some cases, entire multicellular organisms. The subphylum Urochordata exemplifies the latter case, where animals are partially or completely enclosed in “houses” or “tunics”. Despite this common strategy, we show that the house proteome of the appendicularian, Oikopleura, has very little in common with the proteome of the sister class, ascidian, Ciona. Of 80 identified house proteins (oikosins), ∼half lack domain modules or similarity to known proteins, suggesting de novo appearance in appendicularians. Gene duplication has been important in generating almost 1/3 of the current oikosin complement, with serial duplications up to 8 paralogs in one family. Expression pattern analyses revealed that individual oikosins are produced from specific fields of cells within the secretory epithelium, but in some cases, migrate up to at least 20 cell diameters in extracellular space to combine in defined house structures. Interestingly, peroxidasin and secretory phospholipase A2 domains, implicated in innate immune defence are secreted from the anlage associated with the food-concentrating filter, suggesting that this extra-organismal structure may play, in part, such a role in Oikopleura. We also show that sulfation of proteoglycans is required for the hydration and inflation of pre-house rudiments into functional houses. Though correct proportioning in the production of oikosins would seem important in repetitive assembly of the complex house structure, the genomic organization of oikosin loci appears incompatible with common enhancers or locus control regions exerting such a coordinate regulatory role. Thus, though all tunicates employ extracellular matrices based on a cellulose scaffold as a defining feature of the subphylum, they have evolved radically different protein compositions associated with this common underlying structural theme.


Biochemical and Biophysical Research Communications | 2012

Small-angle X-ray scattering reveals structural dynamics of the botulinum neurotoxin associating protein, nontoxic nonhemagglutinin

Yoshimasa Sagane; Shin-Ichiro Miyashita; Keita Miyata; Takashi Matsumoto; Ken Inui; Shintaro Hayashi; Tomonori Suzuki; Kimiko Hasegawa; Shunsuke Yajima; Akihito Yamano; Koichi Niwa; Toshihiro Watanabe

In cell culture supernatants, the botulinum neurotoxin (BoNT) exists as part of a toxin complex (TC) in which nontoxic nonhemagglutinin (NTNHA) and/or hemagglutinins (HAs) are assembled onto the BoNT. A series of investigations indicated that formation of the TC is vital for delivery of the toxin to nerve cells through the digestive tract. In the assembly process, BoNT binds to NTNHA yielding M-TC, and it then matures into L-TC by further association with the HAs via NTNHA in the M-TC. Here, we report a crystal structure of the NTNHA from Clostridium botulinum serotype D strain 4947. Additionally, we performed small-angle X-ray scattering (SAXS) analysis of the NTNHA and the M-TC to elucidate the solution structure. The crystal structure of D-4947 NTNHA revealed that BoNT and NTNHA share a closely related structure consisting of three domains. The SAXS image indicated that, even though the N-terminal two-thirds of the NTNHA molecule had an apparently similar conformation in both the crystal and solution structures, the C-terminal third of the molecule showed a more extended structure in the SAXS image than that seen in the crystallographic image. The discrepancy between the crystal and solution structures implies a high flexibility of the C-terminal third domain of NTNHA, which is involved in binding to BoNT. Structural dynamics of the NTNHA molecule revealed by SAXS may explain its binding to BoNT to form the BoNT/NTNHA complex.


Biochemical and Biophysical Research Communications | 2012

Toxic and nontoxic components of botulinum neurotoxin complex are evolved from a common ancestral zinc protein

Ken Inui; Yoshimasa Sagane; Keita Miyata; Shin-Ichiro Miyashita; Tomonori Suzuki; Yasuyuki Shikamori; Tohru Ohyama; Koichi Niwa; Toshihiro Watanabe

Zinc atoms play an essential role in a number of enzymes. Botulinum neurotoxin (BoNT), the most potent toxin known in nature, is a zinc-dependent endopeptidase. Here we identify the nontoxic nonhemagglutinin (NTNHA), one of the BoNT-complex constituents, as a zinc-binding protein, along with BoNT. A protein structure classification database search indicated that BoNT and NTNHA share a similar domain architecture, comprising a zinc-dependent metalloproteinase-like, BoNT coiled-coil motif and concanavalin A-like domains. Inductively coupled plasma-mass spectrometry analysis demonstrated that every single NTNHA molecule contains a single zinc atom. This is the first demonstration of a zinc atom in this protein, as far as we know. However, the NTNHA molecule does not possess any known zinc-coordinating motif, whereas all BoNT serotypes possess the classical HEXXH motif. Homology modeling of the NTNHA structure implied that a consensus K-C-L-I-K-X(35)-D sequence common among all NTNHA serotype molecules appears to coordinate a single zinc atom. These findings lead us to propose that NTNHA and BoNT may have evolved distinct functional specializations following their branching out from a common ancestral zinc protein.

Collaboration


Dive into the Yoshimasa Sagane's collaboration.

Top Co-Authors

Avatar

Toshihiro Watanabe

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Tohru Ohyama

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Hirokazu Kouguchi

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Koichi Niwa

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Hiroaki Sato

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Tomonori Suzuki

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katsumi Takano

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Keita Miyata

Tokyo University of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge