Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hirokazu Kuwahara is active.

Publication


Featured researches published by Hirokazu Kuwahara.


Nature Communications | 2016

Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein.

Takuma Hashimoto; Daiki D. Horikawa; Yuki Saito; Hirokazu Kuwahara; Hiroko Kozuka-Hata; Tadasu Shin-I; Yohei Minakuchi; Kazuko Ohishi; Ayuko Motoyama; Tomoyuki Aizu; Atsushi Enomoto; Koyuki Kondo; Sae Tanaka; Yuichiro Hara; Shigeyuki Koshikawa; Hiroshi Sagara; Toru Miura; Shin-ichi Yokobori; Kiyoshi Miyagawa; Yutaka Suzuki; Takeo Kubo; Masaaki Oyama; Yuji Kohara; Asao Fujiyama; Kazuharu Arakawa; Toshiaki Katayama; Atsushi Toyoda; Takekazu Kunieda

Tardigrades, also known as water bears, are small aquatic animals. Some tardigrade species tolerate almost complete dehydration and exhibit extraordinary tolerance to various physical extremes in the dehydrated state. Here we determine a high-quality genome sequence of Ramazzottius varieornatus, one of the most stress-tolerant tardigrade species. Precise gene repertoire analyses reveal the presence of a small proportion (1.2% or less) of putative foreign genes, loss of gene pathways that promote stress damage, expansion of gene families related to ameliorating damage, and evolution and high expression of novel tardigrade-unique proteins. Minor changes in the gene expression profiles during dehydration and rehydration suggest constitutive expression of tolerance-related genes. Using human cultured cells, we demonstrate that a tardigrade-unique DNA-associating protein suppresses X-ray-induced DNA damage by ∼40% and improves radiotolerance. These findings indicate the relevance of tardigrade-unique proteins to tolerability and tardigrades could be a bountiful source of new protection genes and mechanisms.


Bioscience, Biotechnology, and Biochemistry | 2003

Isolation of Paenibacillus illinoisensis That Produces Cyclodextrin Glucanotransferase Resistant to Organic Solvents

Noriyuki Doukyu; Hirokazu Kuwahara; Rikizo Aono

A bacterium that secreted cyclodextrin glucanotransferase (CGTase) in a medium overlaid with n-hexane was isolated and identified as Paenibacillus illinoisensis strain ST-12 K. The CGTase of the strain was purified from the culture supernatant. The molecular mass was 70 kDa. The enzyme was stable at pH 6 to 10 and active at pH 5.0 to 8.0. The optimum temperature at pH 7.0 was 65°C in the presence of 5 mM CaCl2. The enzyme produced mainly β-cyclodextrin. The total yield of α-, β-, and γ- cyclodextrins was increased 1.4-fold by the addition of ethanol. In particular, the yield of β-cyclodextrins in the presence of 10% (vol/vol) ethanol was 1.6-fold that without ethanol. The CGTase was stable and active in the presence of large amounts of various organic solvents.


PLOS ONE | 2012

Two novel heat-soluble protein families abundantly expressed in an anhydrobiotic tardigrade.

Ayami Yamaguchi; Sae Tanaka; Shiho Yamaguchi; Hirokazu Kuwahara; Chizuko Takamura; Shinobu Imajoh-Ohmi; Daiki D. Horikawa; Atsushi Toyoda; Toshiaki Katayama; Kazuharu Arakawa; Asao Fujiyama; Takeo Kubo; Takekazu Kunieda

Tardigrades are able to tolerate almost complete dehydration by reversibly switching to an ametabolic state. This ability is called anhydrobiosis. In the anhydrobiotic state, tardigrades can withstand various extreme environments including space, but their molecular basis remains largely unknown. Late embryogenesis abundant (LEA) proteins are heat-soluble proteins and can prevent protein-aggregation in dehydrated conditions in other anhydrobiotic organisms, but their relevance to tardigrade anhydrobiosis is not clarified. In this study, we focused on the heat-soluble property characteristic of LEA proteins and conducted heat-soluble proteomics using an anhydrobiotic tardigrade. Our heat-soluble proteomics identified five abundant heat-soluble proteins. All of them showed no sequence similarity with LEA proteins and formed two novel protein families with distinct subcellular localizations. We named them Cytoplasmic Abundant Heat Soluble (CAHS) and Secretory Abundant Heat Soluble (SAHS) protein families, according to their localization. Both protein families were conserved among tardigrades, but not found in other phyla. Although CAHS protein was intrinsically unstructured and SAHS protein was rich in β-structure in the hydrated condition, proteins in both families changed their conformation to an α-helical structure in water-deficient conditions as LEA proteins do. Two conserved repeats of 19-mer motifs in CAHS proteins were capable to form amphiphilic stripes in α-helices, suggesting their roles as molecular shield in water-deficient condition, though charge distribution pattern in α-helices were different between CAHS and LEA proteins. Tardigrades might have evolved novel protein families with a heat-soluble property and this study revealed a novel repertoire of major heat-soluble proteins in these anhydrobiotic animals.


The ISME Journal | 2014

Intranuclear verrucomicrobial symbionts and evidence of lateral gene transfer to the host protist in the termite gut.

Tomoyuki Sato; Hirokazu Kuwahara; Kazuma Fujita; Satoko Noda; Kumiko Kihara; Akinori Yamada; Moriya Ohkuma; Yuichi Hongoh

In 1944, Harold Kirby described microorganisms living within nuclei of the protists Trichonympha in guts of termites; however, their taxonomic assignment remains to be accomplished. Here, we identified intranuclear symbionts of Trichonympha agilis in the gut of the termite Reticulitermes speratus. We isolated single nuclei of T. agilis, performed whole-genome amplification, and obtained bacterial 16S rRNA genes by PCR. Unexpectedly, however, all of the analyzed clones were from pseudogenes of 16S rRNA with large deletions and numerous sequence variations even within a single-nucleus sample. Authentic 16S rRNA gene sequences were finally recovered by digesting the nuclear DNA; these pseudogenes were present on the host Trichonympha genome. The authentic sequences represented two distinct bacterial species belonging to the phylum Verrucomicrobia, and the pseudogenes have originated from each of the two species. Fluorescence in situ hybridization confirmed that both species are specifically localized, and occasionally co-localized, within nuclei of T. agilis. Transmission electron microscopy revealed that they are distorted cocci with characteristic electron-dense and lucent regions, which resemble the intranuclear symbionts illustrated by Kirby. For these symbionts, we propose a novel genus and species, ‘Candidatus Nucleococcus trichonymphae’ and ‘Candidatus Nucleococcus kirbyi’. These formed a termite-specific cluster with database sequences, other members of which were also detected within nuclei of various gut protists, including both parabasalids and oxymonads. We suggest that this group is widely distributed as intranuclear symbionts of diverse protists in termite guts and that they might have affected the evolution of the host genome through lateral gene transfer.


Astrobiology | 2012

Tolerance of Anhydrobiotic Eggs of the Tardigrade Ramazzottius varieornatus to Extreme Environments

Daiki D. Horikawa; Ayami Yamaguchi; Tetsuya Sakashita; Daisuke Tanaka; Nobuyuki Hamada; Fumiko Yukuhiro; Hirokazu Kuwahara; Takekazu Kunieda; Masahiko Watanabe; Yuichi Nakahara; Seiichi Wada; Tomoo Funayama; Chihiro Katagiri; Seigo Higashi; Shin-ichi Yokobori; Mikinori Kuwabara; Lynn J. Rothschild; Takashi Okuda; Hirofumi Hashimoto; Yasuhiko Kobayashi

Tardigrades are tiny (less than 1 mm in length) invertebrate animals that have the potential to survive travel to other planets because of their tolerance to extreme environmental conditions by means of a dry ametabolic state called anhydrobiosis. While the tolerance of adult tardigrades to extreme environments has been reported, there are few reports on the tolerance of their eggs. We examined the ability of hydrated and anhydrobiotic eggs of the tardigrade Ramazzottius varieornatus to hatch after exposure to ionizing irradiation (helium ions), extremely low and high temperatures, and high vacuum. We previously reported that there was a similar pattern of tolerance against ionizing radiation between hydrated and anhydrobiotic adults. In contrast, anhydrobiotic eggs (50% lethal dose; 1690 Gy) were substantially more radioresistant than hydrated ones (50% lethal dose; 509 Gy). Anhydrobiotic eggs also have a broader temperature resistance compared with hydrated ones. Over 70% of the anhydrobiotic eggs treated at either -196°C or +50°C hatched successfully, but all the hydrated eggs failed to hatch. After exposure to high-vacuum conditions (5.3×10(-4) Pa to 6.2×10(-5) Pa), the hatchability of the anhydrobiotic eggs was comparable to that of untreated control eggs.


Microbes and Environments | 2017

Discovery and Complete Genome Sequence of a Bacteriophage from an Obligate Intracellular Symbiont of a Cellulolytic Protist in the Termite Gut

Ajeng K. Pramono; Hirokazu Kuwahara; Takehiko Itoh; Atsushi Toyoda; Akinori Yamada; Yuichi Hongoh

Termites depend nutritionally on their gut microbes, and protistan, bacterial, and archaeal gut communities have been extensively studied. However, limited information is available on viruses in the termite gut. We herein report the complete genome sequence (99,517 bp) of a phage obtained during a genome analysis of “Candidatus Azobacteroides pseudotrichonymphae” phylotype ProJPt-1, which is an obligate intracellular symbiont of the cellulolytic protist Pseudotrichonympha sp. in the gut of the termite Prorhinotermes japonicus. The genome of the phage, designated ProJPt-Bp1, was circular or circularly permuted, and was not integrated into the two circular chromosomes or five circular plasmids composing the host ProJPt-1 genome. The phage was putatively affiliated with the order Caudovirales based on sequence similarities with several phage-related genes; however, most of the 52 protein-coding sequences had no significant homology to sequences in the databases. The phage genome contained a tRNA-Gln (CAG) gene, which showed the highest sequence similarity to the tRNA-Gln (CAA) gene of the host “Ca. A. pseudotrichonymphae” phylotype ProJPt-1. Since the host genome lacked a tRNA-Gln (CAG) gene, the phage tRNA gene may compensate for differences in codon usage bias between the phage and host genomes. The phage genome also contained a non-coding region with high nucleotide sequence similarity to a region in one of the host plasmids. No other phage-related sequences were found in the host ProJPt-1 genome. To the best of our knowledge, this is the first report of a phage from an obligate, mutualistic endosymbiont permanently associated with eukaryotic cells.


Genome Biology and Evolution | 2016

Comparison of intracellular “Ca. Endomicrobium trichonymphae” genomovars illuminates the requirement and decay of defense systems against foreign DNA

Kazuki Izawa; Hirokazu Kuwahara; Kumiko Kihara; Masahiro Yuki; Nathan Lo; Takehiko Itoh; Moriya Ohkuma; Yuichi Hongoh

“Candidatus Endomicrobium trichonymphae” (Bacteria; Elusimicrobia) is an obligate intracellular symbiont of the cellulolytic protist genus Trichonympha in the termite gut. A previous genome analysis of “Ca. Endomicrobium trichonymphae” phylotype Rs-D17 (genomovar Ri2008), obtained from a Trichonympha agilis cell in the gut of the termite Reticulitermes speratus, revealed that its genome is small (1.1 Mb) and contains many pseudogenes; it is in the course of reductive genome evolution. Here we report the complete genome sequence of another Rs-D17 genomovar, Ti2015, obtained from a different T. agilis cell present in an R. speratus gut. These two genomovars share most intact protein-coding genes and pseudogenes, showing 98.6% chromosome sequence similarity. However, characteristic differences were found in their defense systems, which comprised restriction-modification and CRISPR/Cas systems. The repertoire of intact restriction-modification systems differed between the genomovars, and two of the three CRISPR/Cas loci in genomovar Ri2008 are pseudogenized or missing in genomovar Ti2015. These results suggest relaxed selection pressure for maintaining these defense systems. Nevertheless, the remaining CRISPR/Cas system in each genomovar appears to be active; none of the “spacer” sequences (112 in Ri2008 and 128 in Ti2015) were shared whereas the “repeat” sequences were identical. Furthermore, we obtained draft genomes of three additional endosymbiotic Endomicrobium phylotypes from different host protist species, and discovered multiple, intact CRISPR/Cas systems in each genome. Collectively, unlike bacteriome endosymbionts in insects, the Endomicrobium endosymbionts of termite-gut protists appear to require defense against foreign DNA, although the required level of defense has likely been reduced during their intracellular lives.


BMC Evolutionary Biology | 2011

Loss of genes for DNA recombination and repair in the reductive genome evolution of thioautotrophic symbionts of Calyptogena clams

Hirokazu Kuwahara; Yoshihiro Takaki; Shigeru Shimamura; Takao Yoshida; Taro Maeda; Takekazu Kunieda; Tadashi Maruyama

BackgroundTwo Calyptogena clam intracellular obligate symbionts, Ca. Vesicomyosocius okutanii (Vok; C. okutanii symbiont) and Ca. Ruthia magnifica (Rma; C. magnifica symbiont), have small genomes (1.02 and 1.16 Mb, respectively) with low G+C contents (31.6% and 34.0%, respectively) and are thought to be in an ongoing stage of reductive genome evolution (RGE). They lack recA and some genes for DNA repair, including mutY. The loss of recA and mutY is thought to contribute to the stabilization of their genome architectures and GC bias, respectively. To understand how these genes were lost from the symbiont genomes, we surveyed these genes in the genomes from 10 other Calyptogena clam symbionts using the polymerase chain reaction (PCR).ResultsPhylogenetic trees reconstructed using concatenated 16S and 23S rRNA gene sequences showed that the symbionts formed two clades, clade I (symbionts of C. kawamurai, C. laubieri, C. kilmeri, C. okutanii and C. soyoae) and clade II (those of C. pacifica, C. fausta, C. nautilei, C. stearnsii, C. magnifica, C. fossajaponica and C. phaseoliformis). recA was detected by PCR with consensus primers for recA in the symbiont of C. phaseoliformis. A detailed homology search revealed a remnant recA in the Rma genome. Using PCR with a newly designed primer set, intact recA or its remnant was detected in clade II symbionts. In clade I symbionts, the recA coding region was found to be mostly deleted.In the Rma genome, a pseudogene of mutY was found. Using PCR with newly designed primer sets, mutY was not found in clade I symbionts but was found in clade II symbionts. The G+C content of 16S and 23S rRNA genes in symbionts lacking mutY was significantly lower than in those with mutY.ConclusionsThe extant Calyptogena clam symbionts in clade II were shown to have recA and mutY or their remnants, while those in clade I did not. The present results indicate that the extant symbionts are losing these genes in RGE, and that the loss of mutY contributed to the GC bias of the genomes during their evolution.


Genome Announcements | 2014

Draft Genome Sequences of Psychrobacter Strains JCM 18900, JCM 18901, JCM 18902, and JCM 18903, Isolated Preferentially from Frozen Aquatic Organisms

Toshiaki Kudo; Akihiro Kidera; Muneaki Kida; Ayumi Kawauchi; Ryo Shimizu; Tomomi Nakahara; Xiaochi Zhang; Akinori Yamada; Masao Amano; Yuki Hamada; Shigeto Taniyama; Osamu Arakawa; Asami Yoshida; Kenshiro Oshima; Wataru Suda; Hirokazu Kuwahara; Yuichi Nogi; Keiko Kitamura; Masahiro Yuki; Toshiya Iida; Shigeharu Moriya; Tetsushi Inoue; Yuichi Hongoh; Masahira Hattori; Moriya Ohkuma

ABSTRACT Four Psychrobacter strains, JCM 18900, JCM 18901, JCM 18902, and JCM 18903, related to either Psychrobacter nivimaris or Psychrobacter cibarius, were isolated from frozen marine animals. The genome information of these four strains will be useful for studies of their physiology and adaptation properties to frozen conditions.


Bioscience, Biotechnology, and Biochemistry | 2008

A Maltooligosaccharide-Forming Amylase Gene from Brachybacterium sp. Strain LB25 : Cloning and Expression in Escherichia coli

Noriyuki Doukyu; Wataru Yamagishi; Hirokazu Kuwahara; Hiroyasu Ogino

Brachybacterium sp. strain LB25 produces a maltooligosaccharide-forming amylase that improves product selectivity in water-miscible organic solvents. The enzyme hydrolyzed starch to produce maltotriose primarily. The structural gene encoding the amylase from strain LB25 was cloned and sequenced. The amino acid sequence of the product showed significant similarity (45 to 49%) to amylases from the genus Streptomyces. The amylase gene was expressed in Escherichia coli, but the specific activity of the recombinant amylase was lower than that of the amylase purified from strain LB25.

Collaboration


Dive into the Hirokazu Kuwahara's collaboration.

Top Co-Authors

Avatar

Yuichi Hongoh

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kumiko Kihara

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atsushi Toyoda

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuki Izawa

Tokyo Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge