Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takekazu Kunieda is active.

Publication


Featured researches published by Takekazu Kunieda.


Insect Molecular Biology | 2006

Carbohydrate metabolism genes and pathways in insects: insights from the honey bee genome.

Takekazu Kunieda; Tomoko Fujiyuki; Robert Kucharski; Sylvain Forêt; Seth A. Ament; Amy L. Toth; K Ohashi; Hideaki Takeuchi; Azusa Kamikouchi; Eriko Kage; Mizue Morioka; Martin Beye; Takeo Kubo; Gene E. Robinson; Ryszard Maleszka

Carbohydrate‐metabolizing enzymes may have particularly interesting roles in the honey bee, Apis mellifera, because this social insect has an extremely carbohydrate‐rich diet, and nutrition plays important roles in caste determination and socially mediated behavioural plasticity. We annotated a total of 174 genes encoding carbohydrate‐metabolizing enzymes and 28 genes encoding lipid‐metabolizing enzymes, based on orthology to their counterparts in the fly, Drosophila melanogaster, and the mosquito, Anopheles gambiae. We found that the number of genes for carbohydrate metabolism appears to be more evolutionarily labile than for lipid metabolism. In particular, we identified striking changes in gene number or genomic organization for genes encoding glycolytic enzymes, cellulase, glucose oxidase and glucose dehydrogenases, glucose‐methanol‐choline (GMC) oxidoreductases, fucosyltransferases, and lysozymes.


Insect Molecular Biology | 2001

Identification of a novel gene, Mblk-1, that encodes a putative transcription factor expressed preferentially in the large-type Kenyon cells of the honeybee brain

Hideaki Takeuchi; Eriko Kage; Miyuki Sawata; Azusa Kamikouchi; Kazuaki Ohashi; Maya Ohara; Tomoko Fujiyuki; Takekazu Kunieda; Kazuhisa Sekimizu; Shunji Natori; Takeo Kubo

Mushroom bodies (MBs) are considered to be involved in higher‐order sensory processing in the insect brain. To identify the genes involved in the intrinsic function of the honeybee MBs, we searched for genes preferentially expressed therein, using the differential display method. Here we report a novel gene encoding a putative transcription factor (Mblk‐1) expressed preferentially in one of two types of intrinsic MB neurones, the large‐type Kenyon cells, which makes Mblk‐1 a candidate gene involved in the advanced behaviours of honeybees. A putative DNA binding motif of Mblk‐1 had significant sequence homology with those encoded by genes from various animal species, suggesting that the functions of these proteins in neural cells are conserved among the animal kingdom.


Astrobiology | 2008

Establishment of a Rearing System of the Extremotolerant Tardigrade Ramazzottius varieornatus: A New Model Animal for Astrobiology

Daiki D. Horikawa; Takekazu Kunieda; Wataru Abe; Masahiko Watanabe; Yuichi Nakahara; Fumiko Yukuhiro; Tetsuya Sakashita; Nobuyuki Hamada; Seiichi Wada; Tomoo Funayama; Chihiro Katagiri; Yasuhiko Kobayashi; Seigo Higashi; Takashi Okuda

Studies on the ability of multicellular organisms to tolerate specific environmental extremes are relatively rare compared to those of unicellular microorganisms in extreme environments. Tardigrades are extremotolerant animals that can enter an ametabolic dry state called anhydrobiosis and have high tolerance to a variety of extreme environmental conditions, particularly while in anhydrobiosis. Although tardigrades have been expected to be a potential model animal for astrobiological studies due to their excellent anhydrobiotic and extremotolerant abilities, few studies of tolerance with cultured tardigrades have been reported, possibly due to the absence of a model species that can be easily maintained under rearing conditions. We report the successful rearing of the herbivorous tardigrade, Ramazzottius varieornatus, by supplying the green alga Chlorella vulgaris as food. The life span was 35 +/- 16.4 d, deposited eggs required 5.7 +/- 1.1 d to hatch, and animals began to deposit eggs 9 d after hatching. The reared individuals of this species had an anhydrobiotic capacity throughout their life cycle in egg, juvenile, and adult stages. Furthermore, the reared adults in an anhydrobiotic state were tolerant of temperatures of 90 degrees C and -196 degrees C, and exposure to 99.8% acetonitrile or irradiation with 4000 Gy (4)He ions. Based on their life history traits and tolerance to extreme stresses, R. varieornatus may be a suitable model for astrobiological studies of multicellular organisms.


Nature Communications | 2016

Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein.

Takuma Hashimoto; Daiki D. Horikawa; Yuki Saito; Hirokazu Kuwahara; Hiroko Kozuka-Hata; Tadasu Shin-I; Yohei Minakuchi; Kazuko Ohishi; Ayuko Motoyama; Tomoyuki Aizu; Atsushi Enomoto; Koyuki Kondo; Sae Tanaka; Yuichiro Hara; Shigeyuki Koshikawa; Hiroshi Sagara; Toru Miura; Shin-ichi Yokobori; Kiyoshi Miyagawa; Yutaka Suzuki; Takeo Kubo; Masaaki Oyama; Yuji Kohara; Asao Fujiyama; Kazuharu Arakawa; Toshiaki Katayama; Atsushi Toyoda; Takekazu Kunieda

Tardigrades, also known as water bears, are small aquatic animals. Some tardigrade species tolerate almost complete dehydration and exhibit extraordinary tolerance to various physical extremes in the dehydrated state. Here we determine a high-quality genome sequence of Ramazzottius varieornatus, one of the most stress-tolerant tardigrade species. Precise gene repertoire analyses reveal the presence of a small proportion (1.2% or less) of putative foreign genes, loss of gene pathways that promote stress damage, expansion of gene families related to ameliorating damage, and evolution and high expression of novel tardigrade-unique proteins. Minor changes in the gene expression profiles during dehydration and rehydration suggest constitutive expression of tolerance-related genes. Using human cultured cells, we demonstrate that a tardigrade-unique DNA-associating protein suppresses X-ray-induced DNA damage by ∼40% and improves radiotolerance. These findings indicate the relevance of tardigrade-unique proteins to tolerability and tardigrades could be a bountiful source of new protection genes and mechanisms.


PLOS ONE | 2007

Increased Neural Activity of a Mushroom Body Neuron Subtype in the Brains of Forager Honeybees

Taketoshi Kiya; Takekazu Kunieda; Takeo Kubo

Honeybees organize a sophisticated society, and the workers transmit information about the location of food sources using a symbolic dance, known as ‘dance communication’. Recent studies indicate that workers integrate sensory information during foraging flight for dance communication. The neural mechanisms that account for this remarkable ability are, however, unknown. In the present study, we established a novel method to visualize neural activity in the honeybee brain using a novel immediate early gene, kakusei, as a marker of neural activity. The kakusei transcript was localized in the nuclei of brain neurons and did not encode an open reading frame, suggesting that it functions as a non-coding nuclear RNA. Using this method, we show that neural activity of a mushroom body neuron subtype, the small-type Kenyon cells, is prominently increased in the brains of dancer and forager honeybees. In contrast, the neural activity of the two mushroom body neuron subtypes, the small-and large-type Kenyon cells, is increased in the brains of re-orienting workers, which memorize their hive location during re-orienting flights. These findings demonstrate that the small-type Kenyon cell-preferential activity is associated with foraging behavior, suggesting its involvement in information integration during foraging flight, which is an essential basis for dance communication.


Journal of Biological Chemistry | 2003

The Activity of Mblk-1, a Mushroom Body-selective Transcription Factor from the Honeybee, Is Modulated by the Ras/MAPK Pathway

Jung-Min Park; Takekazu Kunieda; Takeo Kubo

We previously identified a gene, termedMblk-1, that encodes a putative transcription factor with two DNA-binding motifs expressed preferentially in the mushroom body of the honeybee brain, and its preferred binding sequence, termed Mblk-1-binding element (MBE) (Takeuchi, H., Kage, E., Sawata, M., Kamikouchi, A., Ohashi, K., Ohara, M., Fujiyuki, T., Kunieda, T., Sekimizu, K., Natori, S., and Kubo, T. (2001) Insect Mol Biol 10, 487–494; Park, J.-M., Kunieda. T., Takeuchi, H., and Kubo, T. (2002) Biochem. Biophys. Res. Commun. 291, 23–28). In the present study, the effect of Mblk-1 on transcription of genes containing MBE in Drosophila Schneiders Line 2 cells was examined using a luciferase assay. Mblk-1 expression transactivated promoters containing MBEs ∼2–7-fold. Deletion experiments revealed that RHF2, the second DNA-binding domain of Mblk-1, was necessary for the transcriptional activity. Furthermore, mitogen-activated protein kinase (MAPK) phosphorylated Mblk-1 at Ser-444 in vitro, and the Mblk-1-induced transactivation was stimulated by phosphorylation of Ser-444 by the Ras/MAPK pathway in the luciferase assay. These results suggest that Mblk-1 is a transcription factor that might function in the mushroom body neuronal circuits downstream of the Ras/MAPK pathway in the honeybee brain.


PLOS ONE | 2012

Two novel heat-soluble protein families abundantly expressed in an anhydrobiotic tardigrade.

Ayami Yamaguchi; Sae Tanaka; Shiho Yamaguchi; Hirokazu Kuwahara; Chizuko Takamura; Shinobu Imajoh-Ohmi; Daiki D. Horikawa; Atsushi Toyoda; Toshiaki Katayama; Kazuharu Arakawa; Asao Fujiyama; Takeo Kubo; Takekazu Kunieda

Tardigrades are able to tolerate almost complete dehydration by reversibly switching to an ametabolic state. This ability is called anhydrobiosis. In the anhydrobiotic state, tardigrades can withstand various extreme environments including space, but their molecular basis remains largely unknown. Late embryogenesis abundant (LEA) proteins are heat-soluble proteins and can prevent protein-aggregation in dehydrated conditions in other anhydrobiotic organisms, but their relevance to tardigrade anhydrobiosis is not clarified. In this study, we focused on the heat-soluble property characteristic of LEA proteins and conducted heat-soluble proteomics using an anhydrobiotic tardigrade. Our heat-soluble proteomics identified five abundant heat-soluble proteins. All of them showed no sequence similarity with LEA proteins and formed two novel protein families with distinct subcellular localizations. We named them Cytoplasmic Abundant Heat Soluble (CAHS) and Secretory Abundant Heat Soluble (SAHS) protein families, according to their localization. Both protein families were conserved among tardigrades, but not found in other phyla. Although CAHS protein was intrinsically unstructured and SAHS protein was rich in β-structure in the hydrated condition, proteins in both families changed their conformation to an α-helical structure in water-deficient conditions as LEA proteins do. Two conserved repeats of 19-mer motifs in CAHS proteins were capable to form amphiphilic stripes in α-helices, suggesting their roles as molecular shield in water-deficient condition, though charge distribution pattern in α-helices were different between CAHS and LEA proteins. Tardigrades might have evolved novel protein families with a heat-soluble property and this study revealed a novel repertoire of major heat-soluble proteins in these anhydrobiotic animals.


PLOS ONE | 2013

Analysis of DNA Repair and Protection in the Tardigrade Ramazzottius varieornatus and Hypsibius dujardini after Exposure to UVC Radiation

Daiki D. Horikawa; John Cumbers; Iori Sakakibara; Dana Rogoff; Stefan Leuko; Raechel Harnoto; Kazuharu Arakawa; Toshiaki Katayama; Takekazu Kunieda; Atsushi Toyoda; Asao Fujiyama; Lynn J. Rothschild

Tardigrades inhabiting terrestrial environments exhibit extraordinary resistance to ionizing radiation and UV radiation although little is known about the mechanisms underlying the resistance. We found that the terrestrial tardigrade Ramazzottius varieornatus is able to tolerate massive doses of UVC irradiation by both being protected from forming UVC-induced thymine dimers in DNA in a desiccated, anhydrobiotic state as well as repairing the dimers that do form in the hydrated animals. In R. varieornatus accumulation of thymine dimers in DNA induced by irradiation with 2.5 kJ/m2 of UVC radiation disappeared 18 h after the exposure when the animals were exposed to fluorescent light but not in the dark. Much higher UV radiation tolerance was observed in desiccated anhydrobiotic R. varieornatus compared to hydrated specimens of this species. On the other hand, the freshwater tardigrade species Hypsibius dujardini that was used as control, showed much weaker tolerance to UVC radiation than R. varieornatus, and it did not contain a putative phrA gene sequence. The anhydrobiotes of R. varieornatus accumulated much less UVC-induced thymine dimers in DNA than hydrated one. It suggests that anhydrobiosis efficiently avoids DNA damage accumulation in R. varieornatus and confers better UV radiation tolerance on this species. Thus we propose that UV radiation tolerance in tardigrades is due to the both high capacities of DNA damage repair and DNA protection, a two-pronged survival strategy.


Journal of Proteome Research | 2013

Proteomic Analysis of the Royal Jelly and Characterization of the Functions of its Derivation Glands in the Honeybee

Toshiyuki Fujita; Hiroko Kozuka-Hata; Hiroko Ao-Kondo; Takekazu Kunieda; Masaaki Oyama; Takeo Kubo

To identify candidate royal jelly (RJ) proteins that might affect the physiologic status of honeybee colony members, we used shotgun proteomics to comprehensively identify the RJ proteome as well as proteomes of the hypopharyngeal gland (HpG), postcerebral gland (PcG), and thoracic gland (TG), from which RJ proteins are assumed to be derived. We identified a total of 38 nonredundant RJ proteins, including 22 putative secretory proteins and Insulin-like growth factor-binding protein complex acid labile subunit. Among them, 9 proteins were newly identified from RJ. Comparison of the RJ proteome with the HpG, PcG, and TG proteomes revealed that 17 of the 22 putative secretory RJ proteins were derived from some of these glands, suggesting that the RJ proteome is a cocktail of proteins from these three glands. Furthermore, pathway analysis suggested that the HpG proteome represents the molecular basis of the extremely high protein-synthesizing ability, whereas the PcG proteome suggests that the PcG functions as a reservoir for the volatile compounds and a primer pheromone. Finally, to further characterize the possible total RJ proteome, we identified putative secretory proteins in the proteomes of these three glands. This will be useful for predicting novel RJ protein components in future studies.


Journal of Biological Chemistry | 2008

The extracellular adenosine deaminase growth factor, ADGF/CECR1, plays a role in Xenopus embryogenesis via the adenosine/P1 receptor.

Ryoko Iijima; Takekazu Kunieda; Shinji Yamaguchi; Hiroko Kamigaki; Ikuko Fujii-Taira; Kazuhisa Sekimizu; Takeo Kubo; Shunji Natori; Koichi J. Homma

Adenosine deaminase-related growth factors (ADGF), also known as CECR1 in vertebrates, are a novel family of growth factors with sequence similarity to classical cellular adenosine deaminase. Although genes for ADGF/CECR1 have been identified in both invertebrates as well as vertebrates, their in vivo functions in vertebrates remain unknown. We isolated cDNA clones for two cerc 1s from Xenopus laevis. Both recombinant Xenopus CECR1s exhibited adenosine deaminase and growth factor activity, and the adenosine deaminase activity was found to be indispensable for growth factor activity. The Xenopus cerc 1s are expressed in the somites, pronephros, eyes, cement gland, neural tube, and neural floor plate of the embryos. Knock-down of these two genes using morpholino oligonucleotides caused a reduction in the body size and abnormalities of the body axis in the Xenopus embryos, accompanied by selective changes in the expression of developmental marker genes. Injection of adenosine, agonists for adenosine/P1 receptors, or adenosine deaminase inhibitor into late gastrula archenteron embryos resulted in developmental defects similar to those caused by morpholino oligonucleotide injection. These results show, for the first time, the involvement of CECR1s via the adenosine/P1 receptors in vertebrate embryogenesis via regulation of extracellular adenosine concentrations.

Collaboration


Dive into the Takekazu Kunieda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atsushi Toyoda

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Hirokazu Kuwahara

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge