Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroki Irieda is active.

Publication


Featured researches published by Hiroki Irieda.


New Phytologist | 2013

Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi

Pamela Gan; Kyoko Ikeda; Hiroki Irieda; Mari Narusaka; Richard O'Connell; Yoshihiro Narusaka; Yoshitaka Takano; Yasuyuki Kubo; Ken Shirasu

Hemibiotrophic fungal plant pathogens represent a group of agronomically significant disease-causing agents that grow first on living tissue and then cause host death in later, necrotrophic growth. Among these, Colletotrichum spp. are devastating pathogens of many crops. Identifying expanded classes of genes in the genomes of phytopathogenic Colletotrichum, especially those associated with specific stages of hemibiotrophy, can provide insights on how these pathogens infect a large number of hosts. The genomes of Colletotrichum orbiculare, which infects cucurbits and Nicotiana benthamiana, and C. gloeosporioides, which infects a wide range of crops, were sequenced and analyzed, focusing on features with potential roles in pathogenicity. Regulation of C. orbiculare gene expression was investigated during infection of N. benthamiana using a custom microarray. Genes expanded in both genomes compared to other fungi included sequences encoding small, secreted proteins (SSPs), secondary metabolite synthesis genes, proteases and carbohydrate-degrading enzymes. Many SSP and secondary metabolite synthesis genes were upregulated during initial stages of host colonization, whereas the necrotrophic stage of growth is characterized by upregulation of sequences encoding degradative enzymes. Hemibiotrophy in C. orbiculare is characterized by distinct stage-specific gene expression profiles of expanded classes of potential pathogenicity genes.


PLOS Pathogens | 2012

Large-Scale Gene Disruption in Magnaporthe oryzae Identifies MC69, a Secreted Protein Required for Infection by Monocot and Dicot Fungal Pathogens

Hiromasa Saitoh; Shizuko Fujisawa; Chikako Mitsuoka; Akiko Ito; Akiko Hirabuchi; Kyoko Ikeda; Hiroki Irieda; Kae Yoshino; Kentaro Yoshida; Hideo Matsumura; Yukio Tosa; Joe Win; Sophien Kamoun; Yoshitaka Takano; Ryohei Terauchi

To search for virulence effector genes of the rice blast fungus, Magnaporthe oryzae, we carried out a large-scale targeted disruption of genes for 78 putative secreted proteins that are expressed during the early stages of infection of M. oryzae. Disruption of the majority of genes did not affect growth, conidiation, or pathogenicity of M. oryzae. One exception was the gene MC69. The mc69 mutant showed a severe reduction in blast symptoms on rice and barley, indicating the importance of MC69 for pathogenicity of M. oryzae. The mc69 mutant did not exhibit changes in saprophytic growth and conidiation. Microscopic analysis of infection behavior in the mc69 mutant revealed that MC69 is dispensable for appressorium formation. However, mc69 mutant failed to develop invasive hyphae after appressorium formation in rice leaf sheath, indicating a critical role of MC69 in interaction with host plants. MC69 encodes a hypothetical 54 amino acids protein with a signal peptide. Live-cell imaging suggested that fluorescently labeled MC69 was not translocated into rice cytoplasm. Site-directed mutagenesis of two conserved cysteine residues (Cys36 and Cys46) in the mature MC69 impaired function of MC69 without affecting its secretion, suggesting the importance of the disulfide bond in MC69 pathogenicity function. Furthermore, deletion of the MC69 orthologous gene reduced pathogenicity of the cucumber anthracnose fungus Colletotrichum orbiculare on both cucumber and Nicotiana benthamiana leaves. We conclude that MC69 is a secreted pathogenicity protein commonly required for infection of two different plant pathogenic fungi, M. oryzae and C. orbiculare pathogenic on monocot and dicot plants, respectively.


Journal of Biological Chemistry | 2011

A Microbial Rhodopsin with a Unique Retinal Composition Shows Both Sensory Rhodopsin II and Bacteriorhodopsin-like Properties

Yuki Sudo; Kunio Ihara; Shiori Kobayashi; Daisuke Suzuki; Hiroki Irieda; Takashi Kikukawa; Hideki Kandori; Michio Homma

Rhodopsins possess retinal chromophore surrounded by seven transmembrane α-helices, are widespread in prokaryotes and in eukaryotes, and can be utilized as optogenetic tools. Although rhodopsins work as distinctly different photoreceptors in various organisms, they can be roughly divided according to their two basic functions, light-energy conversion and light-signal transduction. In microbes, light-driven proton transporters functioning as light-energy converters have been modified by evolution to produce sensory receptors that relay signals to transducer proteins to control motility. In this study, we cloned and characterized two newly identified microbial rhodopsins from Haloquadratum walsbyi. One of them has photochemical properties and a proton pumping activity similar to the well known proton pump bacteriorhodopsin (BR). The other, named middle rhodopsin (MR), is evolutionarily transitional between BR and the phototactic sensory rhodopsin II (SRII), having an SRII-like absorption maximum, a BR-like photocycle, and a unique retinal composition. The wild-type MR does not have a light-induced proton pumping activity. On the other hand, a mutant MR with two key hydrogen-bonding residues located at the interaction surface with the transducer protein HtrII shows robust phototaxis responses similar to SRII, indicating that MR is potentially capable of the signaling. These results demonstrate that color tuning and insertion of the critical threonine residue occurred early in the evolution of sensory rhodopsins. MR may be a missing link in the evolution from type 1 rhodopsins (microorganisms) to type 2 rhodopsins (animals), because it is the first microbial rhodopsin known to have 11-cis-retinal similar to type 2 rhodopsins.


Journal of Biological Chemistry | 2012

Photo-induced regulation of the chromatic adaptive gene expression by Anabaena sensory rhodopsin

Hiroki Irieda; Teppei Morita; Kimika Maki; Michio Homma; Hiroji Aiba; Yuki Sudo

Background: ASR is categorized as a microbial sensory rhodopsin. Results: ASR represses the transcription of the chromatic adaptive gene cpcB through its C-terminal region. Conclusion: We demonstrate a novel function of a retinal-containing protein, and suggest that a membrane-spanning protein can function as a transcriptional factor. Significance: The knowledge gained in this study will help us to understand the functional diversity of microbial rhodopsins. Rhodopsin molecules are photochemically reactive membrane-embedded proteins, with seven transmembrane α-helices, which bind the chromophore retinal (vitamin A aldehyde). They are roughly divided into two groups according to their basic functions: (i) ion transporters such as proton pumps, chloride pumps, and cation channels; and (ii) photo-sensors such as sensory rhodopsin from microbes and visual pigments from animals. Anabaena sensory rhodopsin (ASR), found in 2003 in the cyanobacterium Anabaena PCC7120, is categorized as a microbial sensory rhodopsin. To investigate the function of ASR in vivo, ASR and the promoter sequence of the pigment protein phycocyanin were co-introduced into Escherichia coli cells with the reporter gene crp. The result clearly showed that ASR functions as a repressor of the CRP protein expression and that this is fully inhibited by the light activation of ASR, suggesting that ASR would directly regulate the transcription of crp. The repression is also clearly inhibited by the truncation of the C-terminal region of ASR, or mutations on the C-terminal Arg residues, indicating the functional importance of the C-terminal region. Thus, our results demonstrate a novel function of rhodopsin molecules and raise the possibility that the membrane-spanning protein ASR could work as a transcriptional factor. In the future, the ASR activity could be utilized as a tool for arbitrary protein expression in vivo regulated by visible light.


The Plant Cell | 2014

Colletotrichum orbiculare Secretes Virulence Effectors to a Biotrophic Interface at the Primary Hyphal Neck via Exocytosis Coupled with SEC22-Mediated Traffic

Hiroki Irieda; Hitomi Maeda; Kaoru Akiyama; Asuka Hagiwara; Hiromasa Saitoh; Aiko Uemura; Ryohei Terauchi; Yoshitaka Takano

This work shows that the cucumber anthracnose fungus Colletotrichum orbiculare accumulates its virulence effectors in the plant–pathogen interfacial region around the neck of primary biotrophic hyphae developed in host cells. It also describes that the pathogen secretes the effectors toward the interfacial region via SEC22-dependent traffic and SEC4-mediated exocytosis. The hemibiotrophic pathogen Colletotrichum orbiculare develops biotrophic hyphae inside cucumber (Cucumis sativus) cells via appressorial penetration; later, the pathogen switches to necrotrophy. C. orbiculare also expresses specific effectors at different stages. Here, we found that virulence-related effectors of C. orbiculare accumulate in a pathogen–host biotrophic interface. Fluorescence-tagged effectors accumulated in a ring-like region around the neck of the biotrophic primary hyphae. Fluorescence imaging of cellular components and transmission electron microscopy showed that the ring-like signals of the effectors localized at the pathogen–plant interface. Effector accumulation at the interface required induction of its expression during the early biotrophic phase, suggesting that transcriptional regulation may link to effector localization. We also investigated the route of effector secretion to the interface. An exocytosis-related component, the Rab GTPase SEC4, localized to the necks of biotrophic primary hyphae adjacent to the interface, thereby suggesting focal effector secretion. Disruption of SEC4 in C. orbiculare reduced virulence and impaired effector delivery to the ring signal interface. Disruption of the v-SNARE SEC22 also reduced effector delivery. These findings suggest that biotrophy-expressed effectors are secreted, via the endoplasmic reticulum-to-Golgi route and subsequent exocytosis, toward the interface generated between C. orbiculare and the host cell.


Biochemistry | 2009

Characterization of a signaling complex composed of sensory rhodopsin I and its cognate transducer protein from the eubacterium Salinibacter ruber.

Yuki Sudo; Akiko Okada; Daisuke Suzuki; Keiichi Inoue; Hiroki Irieda; Makoto Sakai; Masaaki Fujii; Yuji Furutani; Hideki Kandori; Michio Homma

Sensory rhodopsin I (SRI) exists in the cell membranes of microorganisms such as the archaeon Halobacterium salinarum and is a photosensor responsible for positive and negative phototaxis. SRI forms a signaling complex with its cognate transducer protein, HtrI, in the membrane. That complex transmits light signals to the flagellar motor through changes in protein-protein interactions with the kinase CheA and the adaptor protein CheW, which controls the direction of the rotation of the flagellar motor. Recently, we cloned and characterized Salinibacter sensory rhodopsin I (SrSRI), which is the first SRI-like protein identified in eubacteria [Kitajima-Ihara, T., et al. (2008) J. Biol. Chem. 283, 23533-23541]. Here we cloned and expressed SrSRI with its full-length transducer protein, SrHtrI, as a fusion construct. We succeeded in producing the complex in Escherichia coli as a recombinant protein with high quality having all-trans-retinal as a chromophore for SRI, although the expression level was low (0.10 mg/L of culture). In addition, we report here the photochemical properties of the SrSRI-SrHtrI complex using time-resolved laser flash spectroscopy and other spectroscopic techniques and compare them to SrSRI without SrHtrI.


Molecular Plant-microbe Interactions | 2012

Cell death of Nicotiana benthamiana is induced by secreted protein NIS1 of Colletotrichum orbiculare and is suppressed by a homologue of CgDN3.

Kae Yoshino; Hiroki Irieda; Fumie Sugimoto; Hirofumi Yoshioka; Tetsuro Okuno; Yoshitaka Takano

Colletotrichum orbiculare, the causal agent of cucumber anthracnose, infects Nicotiana benthamiana. Functional screening of C. orbiculare cDNAs in a virus vector-based plant expression system identified a novel secreted protein gene, NIS1, whose product induces cell death in N. benthamiana. Putative homologues of NIS1 are present in selected members of fungi belonging to class Sordariomycetes, Dothideomycetes, or Orbiliomycetes. Green fluorescent protein-based expression studies suggested that NIS1 is preferentially expressed in biotrophic invasive hyphae. NIS1 lacking signal peptide did not induce NIS1-triggered cell death (NCD), suggesting apoplastic recognition of NIS1. NCD was prevented by virus-induced gene silencing of SGT1 and HSP90, indicating the dependency of NCD on SGT1 and HSP90. Deletion of NIS1 had little effect on the virulence of C. orbiculare against N. benthamiana, suggesting possible suppression of NCD by C. orbiculare at the postinvasive stage. The CgDN3 gene of C. gloeosporioides was previously identified as a secreted protein gene involved in suppression of hypersensitive-like response in Stylosanthes guianensis. Notably, we found that NCD was suppressed by the expression of a CgDN3 homologue of C. orbiculare. Our findings indicate that C. orbiculare expresses NIS1 at the postinvasive stage and suggest that NCD could be repressed via other effectors, including the CgDN3 homologue.


Sensors | 2010

Phototactic and Chemotactic Signal Transduction by Transmembrane Receptors and Transducers in Microorganisms

Daisuke Suzuki; Hiroki Irieda; Michio Homma; Ikuro Kawagishi; Yuki Sudo

Microorganisms show attractant and repellent responses to survive in the various environments in which they live. Those phototaxic (to light) and chemotaxic (to chemicals) responses are regulated by membrane-embedded receptors and transducers. This article reviews the following: (1) the signal relay mechanisms by two photoreceptors, Sensory Rhodopsin I (SRI) and Sensory Rhodopsin II (SRII) and their transducers (HtrI and HtrII) responsible for phototaxis in microorganisms; and (2) the signal relay mechanism of a chemoreceptor/transducer protein, Tar, responsible for chemotaxis in E. coli. Based on results mainly obtained by our group together with other findings, the possible molecular mechanisms for phototaxis and chemotaxis are discussed.


Journal of Biological Chemistry | 2006

Control of Chemotactic Signal Gain via Modulation of a Pre-formed Receptor Array

Hiroki Irieda; M. Homma; Michio Homma; Ikuro Kawagishi

The remarkably wide dynamic range of the chemotactic pathway of Escherichia coli, a model signal transduction system, is achieved by methylation/amidation of the transmembrane chemoreceptors that regulate the histidine kinase CheA in response to extracellular stimuli. The chemoreceptors cluster at a cell pole together with CheA and the adaptor CheW. Several lines of evidence have led to models that assume high cooperativity and sensitivity via collaboration of receptor dimers within a cluster. Here, using in vivo disulfide cross-linking assays, we have demonstrated a well defined arrangement of the aspartate chemoreceptor (Tar). The differential effects of amidation on cross-linking at different positions indicate that amidation alters the relative orientation of Tar dimers to each other (presumably inducing rotational displacements) without much affecting the conformation of the periplasmic domains. Interestingly, the effect of aspartate on cross-linking at any position tested was roughly opposite to that of receptor amidation. Furthermore, amidation attenuated the effects of aspartate by several orders of magnitude. These results suggest that receptor covalent modification controls signal gain by altering the arrangement or packing of receptor dimers in a pre-formed cluster.


Biochemistry | 2011

Structural characteristics around the β-ionone ring of the retinal chromophore in Salinibacter sensory rhodopsin I.

Hiroki Irieda; Louisa Reissig; Akira Kawanabe; Michio Homma; Hideki Kandori; Yuki Sudo

Organisms sense and respond to environmental stimuli through membrane-embedded receptors and transducers. Sensory rhodopsin I (SRI) and sensory rhodopsin II (SRII) are the photoreceptors for the positive and negative phototaxis in microorganisms, respectively. They form signaling complexes in the membrane with their cognate transducer proteins, HtrI and HtrII, and these SRI-HtrI and SRII-HtrII complexes transmit a light signal through their cytoplasmic sensory signaling system, inducing opposite effects (i.e., the inactivation or activation of the kinase CheA). Here we found, by using Fourier transformed infrared spectroscopy, that a conserved residue, Asp102 in Salinibacter SRI (SrSRI), which is located close to the β-ionone ring of the retinal chromophore, is deprotonated upon formation of the active M-intermediate. Furthermore, the D102E mutant of SrSRI affects the structure and/or structural changes of Cys130. This mutant shows a large spectral shift and is comparably unstable, especially in the absence of Cl(-). These phenomena have not been observed in the wild-type, or the N105Q and N105D mutants of Natronomonas pharaonis SRII (NpSRII), indicating differences in the structure and structural changes between SrSRI and NpSRII around the β-ionone ring. These differences could also be supported by the measurements of the reactivity with the water-soluble reagent azide. On the basis of these results, we discuss the structure and structural changes around the retinal chromophore in SrSRI.

Collaboration


Dive into the Hiroki Irieda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daisuke Suzuki

Sapporo Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideki Kandori

Nagoya Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akira Kawanabe

Nagoya Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Daisuke Shiomi

National Institute of Genetics

View shared research outputs
Researchain Logo
Decentralizing Knowledge