Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroki Nagase is active.

Publication


Featured researches published by Hiroki Nagase.


Molecular and Cellular Biology | 2002

Absence of the CAAX endoprotease Rce1: effects on cell growth and transformation.

Martin O. Bergo; Patricia Ambroziak; Cria Gregory; Amanda George; James C. Otto; Edward Kim; Hiroki Nagase; Patrick J. Casey; Allan Balmain; Stephen G. Young

ABSTRACT After isoprenylation, the Ras proteins and other CAAX proteins undergo two additional enzymatic modifications—endoproteolytic release of the last three amino acids of the protein by the protease Rce1 and methylation of the carboxyl-terminal isoprenylcysteine by the methyltransferase Icmt. This postisoprenylation processing is thought to be important for the association of Ras proteins with membranes. Blocking postisoprenylation processing, by inhibiting Rce1, has been suggested as a potential approach for retarding cell growth and blocking cellular transformation. The objective of this study was to develop a cell culture system for addressing these issues. We generated mice with a conditional Rce1 allele (Rce1 flox) and produced Rce1 flox/flox fibroblasts. Cre-mediated excision of Rce1 (thereby producing Rce1 Δ/Δ fibroblasts) eliminated Ras endoproteolytic processing and methylation and caused a partial mislocalization of truncated K-Ras and H-Ras fusion proteins within cells. Rce1 Δ/Δ fibroblasts grew more slowly than Rce1 flox/flox fibroblasts. The excision of Rce1 also reduced Ras-induced transformation, as judged by the growth of colonies in soft agar. The excision of Rce1 from a Rce1 flox/flox skin carcinoma cell line also significantly retarded the growth of cells, and this effect was exaggerated by cotreatment of the cells with a farnesyltransferase inhibitor. These studies support the idea that interference with postisoprenylation processing retards cell growth, limits Ras-induced transformation, and sensitizes tumor cells to a farnesyltransferase inhibitor.


Cancer Research | 2005

Two Functional Coding Single Nucleotide Polymorphisms in STK15 (Aurora-A) Coordinately Increase Esophageal Cancer Risk

Makoto Kimura; Takahiro Mori; Jeffrey Conroy; Norma J. Nowak; Susumu Satomi; Katsuyuki Tamai; Hiroki Nagase

STK15/Aurora-A is a serine/threonine kinase essential for chromosome segregation and cytokinesis, and is considered to be a cancer susceptibility gene in mice and humans. Two coding single nucleotide polymorphisms in Aurora-A, 91T>A [phenylalanine/isoleucine (F/I)] and 169G>A [valine/isoleucine (V/I)], create four haplotypes, 91T-169G, 91A-169G, 91T-169A, and 91A-169A. We evaluated the association between these coding single nucleotide polymorphisms and esophageal cancer risk by genotyping 197 esophageal cancer cases and 146 controls. Haplotype 91A-169A (I31/I57) was observed to be statistically more frequent in cancer cases (odds ratio, 3.1452; 95% confidence interval, 1.0258-9.6435). Functional differences among the four isoforms were then analyzed to reveal the source of the cancer risk. Kinase activity levels of I31/I57 and F31/I57 were reduced to 15% and 40% compared with I31/V57 in vivo and in vitro. We considered the differences between the kinase activities and divided individuals into four categories of Aurora-A haplotype combination. Category I had 57.5% or less kinase activity compared with the most common category, category III, and had a significantly higher estimated cancer risk (odds ratio, 5.5328; 95% confidence interval, 1.8149-16.8671). Abnormal nuclear morphology, a characteristic of genomic instability, was observed to be 30 to 40 times more frequent in human immortalized fibroblast cells overexpressing I31/I57 or F31/I57 compared with the others. Furthermore, significantly higher levels of chromosomal instability were observed in cancers in category I (homozygote 91T-169A) than those in category III (homozygous 91A-169G). These results indicate that the less kinase active Aurora-A haplotype combinations might induce genomic instability and increase esophageal cancer risk either in a recessive or a dominant manner.


Scientific Reports | 2012

A synthetic small molecule for rapid induction of multiple pluripotency genes in mouse embryonic fibroblasts

Ganesh N. Pandian; Yusuke Nakano; Shinsuke Sato; Hironobu Morinaga; Toshikazu Bando; Hiroki Nagase; Hiroshi Sugiyama

Cellular reprogramming involves profound alterations in genome-wide gene expression that is precisely controlled by a hypothetical epigenetic code. Small molecules have been shown to artificially induce epigenetic modifications in a sequence independent manner. Recently, we showed that specific DNA binding hairpin pyrrole-imidazole polyamides (PIPs) could be conjugated with chromatin modifying histone deacetylase inhibitors like SAHA to epigenetically activate certain pluripotent genes in mouse fibroblasts. In our steadfast progress to improve the efficiency of SAHA-PIPs, we identified a novel compound termed, δ that could dramatically induce the endogenous expression of Oct-3/4 and Nanog. Genome-wide gene analysis suggests that in just 24 h and at nM concentration, δ induced multiple pluripotency-associated genes including Rex1 and Cdh1 by more than ten-fold. δ treated MEFs also rapidly overcame the rate-limiting step of epithelial transition in cellular reprogramming by switching “” the complex transcriptional gene network.


Cell Death and Disease | 2013

Runt-related transcription factor 2 (RUNX2) inhibits p53-dependent apoptosis through the collaboration with HDAC6 in response to DNA damage

Toshinori Ozaki; Dan Wu; H Sugimoto; Hiroki Nagase; Akira Nakagawara

Runt-related transcription factor 2 (RUNX2) is the best known as an essential protein for osteoblast differentiation. In this study, we have found for the first time that RUNX2 acts as a negative regulator for p53 in response to DNA damage. On DNA damage mediated by adriamycin (ADR) exposure, p53 as well as RUNX2 was induced at protein and mRNA level in human osteosarcoma-derived U2OS cells in association with a significant upregulation of various p53-target genes. Indirect immunostaining and co-immunoprecipitation experiments demonstrated that RUNX2 colocalizes with p53 in cell nucleus and forms a complex with p53 following ADR treatment. Chromatin immunoprecipitation assays revealed that RUNX2/p53 complex is efficiently recruited onto p53-target promoters in response to ADR, suggesting that RUNX2 might be involved in the regulation of transcriptional activation mediated by p53. Indeed, forced expression of RUNX2 resulted in a remarkable downregulation of p53-target genes. Consistent with these observations, knockdown of RUNX2 enhanced ADR-mediated apoptosis and also elevated p53-target gene expression in response to ADR. On the other hand, depletion of RUNX2 in p53-deficient human lung carcinoma-derived H1299 cells had an undetectable effect on p53-target gene expression regardless of ADR treatment, indicating that RUNX2-mediated downregulation of p53-target genes is dependent on p53. Furthermore, RUNX2/p53 complex included histone deacetylase 6 (HDAC6) and HDAC6 was also recruited onto p53-target promoters following ADR exposure. Of note, HDAC6-specific chemical inhibitor tubacin treatment enhanced ADR-mediated upregulation of p53-target gene expression, indicating that deacetylase activity of HDAC6 is required for RUNX2-mediated downregulation of p53-target gene. Taken together, our present findings strongly suggest that RUNX2 inhibits DNA damage-induced transcriptional as well as pro-apoptotic activity of p53 through the functional collaboration with HDAC6 and therefore might be an attractive therapeutic target for cancer treatment.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Specific mitochondrial DNA mutation in mice regulates diabetes and lymphoma development

Osamu Hashizume; Akinori Shimizu; Mutsumi Yokota; Atsuko Sugiyama; Kazuto Nakada; Hiroyuki Miyoshi; Makiko Itami; Miki Ohira; Hiroki Nagase; Keizo Takenaga; Jun-Ichi Hayashi

It has been hypothesized that respiration defects caused by accumulation of pathogenic mitochondrial DNA (mtDNA) mutations and the resultant overproduction of reactive oxygen species (ROS) or lactates are responsible for aging and age-associated disorders, including diabetes and tumor development. However, there is no direct evidence to prove the involvement of mtDNA mutations in these processes, because it is difficult to exclude the possible involvement of nuclear DNA mutations. Our previous studies resolved this issue by using an mtDNA exchange technology and showed that a G13997A mtDNA mutation found in mouse tumor cells induces metastasis via ROS overproduction. Here, using transmitochondrial mice (mito-mice), which we had generated previously by introducing G13997A mtDNA from mouse tumor cells into mouse embryonic stem cells, we provide convincing evidence supporting part of the abovementioned hypothesis by showing that G13997A mtDNA regulates diabetes development, lymphoma formation, and metastasis—but not aging—in this model.


ChemBioChem | 2011

Synthetic small molecules for epigenetic activation of pluripotency genes in mouse embryonic fibroblasts.

Ganesh N. Pandian; Ken-ichi Shinohara; Akimichi Ohtsuki; Yusuke Nakano; Minoshima Masafumi; Toshikazu Bando; Hiroki Nagase; Yasuhiro Yamada; Akira Watanabe; Naohiro Terada; Shinsuke Sato; Hironobu Morinaga; Hiroshi Sugiyama

Considering the essential role of chromatin remodeling in gene regulation, their directed modulation is of increasing importance. To achieve gene activation by epigenetic modification, we synthesized a series of pyrrole–imidazole polyamide conjugates (PIPs) that can bind to predetermined DNA sequences, and attached them with suberoylanilide hydroxamic acid (SAHA), a potent histone deacetylase inhibitor. As histone modification is associated with pluripotency, these new types of conjugates, termed SAHA–PIPs, were screened for their effect on the expression of induced pluripotent stem cell (iPSC) factors. We found certain SAHA–PIPs that could differentially up‐regulate the endogenous expression of Oct‐3/4, Nanog, Sox2, Klf4 and c‐Myc. SAHA and other SAHA–PIPs did not show such induction; this implies a role for PIPs and their sequence specificity in this differential gene activation. Chromatin immunoprecipitation analysis suggested that SAHA–PIP‐mediated gene induction proceeds by histone H3 Lys9 and Lys14 acetylation and Lys4 trimethylation, which are epigenetic features associated with transcriptionally active chromatin.


Oncogene | 2003

Genetic interactions between Pten and p53 in radiation-induced lymphoma development

Jian-Hua Mao; Di Wu; Jesus Perez-Losada; Hiroki Nagase; Reyno DelRosario; Allan Balmain

Genetic analysis of radiation-induced lymphomas from p53 heterozygous or null mice has revealed a high frequency of genetic alterations on mouse chromosome 19. Detailed microsatellite analysis of chromosome 19 deletions identified three independent regions of loss of heterozygosity, one of which was refined to a 0.3 Mb interval that contained the Pten tumor suppressor gene. More than 50% of radiation-induced tumors from p53+/− and p53−/− mice showed heterozygous loss of one Pten allele. In most cases, the remaining allele was wild type and expressed, suggesting that Pten is a haploinsufficient tumor suppressor gene for mouse lymphoma development. This conclusion was supported by the detection of specific intragenic deletions in Pten in tumors that retained one wild-type allele. Pten heterozygous mice were just as sensitive as p53+/− mice to induction of tumors by radiation, and surprisingly, the double p53+/−Pten+/−mice were equivalent to p53 null mice in radiation sensitivity. Despite the fact that Pten appears to be a haploinsufficient tumor suppressor gene, most tumors from both the single and double heterozygous mice had lost the remaining wild-type allele. The mechanism of loss in all cases involved the complete chromosome, suggesting that it is driven by other tumor suppressor genes on this chromosome. This sensitized screen therefore identified complementary roles for Pten and p53 pathways in suppression of tumor development induced by radiation exposure.


Scientific Reports | 2015

Distinct DNA-based epigenetic switches trigger transcriptional activation of silent genes in human dermal fibroblasts

Ganesh N. Pandian; Syed Junetha; Shinsuke Sato; Le Han; Abhijit Saha; Chandran Anandhakumar; Toshikazu Bando; Hiroki Nagase; Thangavel Vaijayanthi; Rhys Dylan Taylor; Hiroshi Sugiyama

The influential role of the epigenome in orchestrating genome-wide transcriptional activation instigates the demand for the artificial genetic switches with distinct DNA sequence recognition. Recently, we developed a novel class of epigenetically active small molecules called SAHA-PIPs by conjugating selective DNA binding pyrrole-imidazole polyamides (PIPs) with the histone deacetylase inhibitor SAHA. Screening studies revealed that certain SAHA-PIPs trigger targeted transcriptional activation of pluripotency and germ cell genes in mouse and human fibroblasts, respectively. Through microarray studies and functional analysis, here we demonstrate for the first time the remarkable ability of thirty-two different SAHA-PIPs to trigger the transcriptional activation of exclusive clusters of genes and noncoding RNAs. QRT-PCR validated the microarray data, and some SAHA-PIPs activated therapeutically significant genes like KSR2. Based on the aforementioned results, we propose the potential use of SAHA-PIPs as reagents capable of targeted transcriptional activation.


Cardiovascular Research | 2009

A pyrrole–imidazole polyamide targeting transforming growth factor-β1 inhibits restenosis and preserves endothelialization in the injured artery

En-Hui Yao; Noboru Fukuda; Takahiro Ueno; Hiroyuki Matsuda; Hiroki Nagase; Yoshiaki Matsumoto; Hiroshi Sugiyama; Koichi Matsumoto

AIMS Although the use of drug-eluting stents (DESs) has been shown to limit neointima hyperplasia, currently available DESs may adversely affect re-endothelialization. To evaluate whether a novel gene silencer pyrrole-imidazole (PI) polyamide targeting transforming growth factor (TGF)-beta1 is a candidate agent for the DESs, we examined the effects of PI polyamide targeting the TGF-beta1 promoter on neointimal formation in rat carotid artery after balloon injury. METHODS AND RESULTS PI polyamide was designed to span the boundary of the AP-1 binding site of the TGF-beta1 promoter. After inducing balloon injury to arteries, incubation with PI polyamide was carried out for 10 min. Neointimal thickening and re-endothelialization were evaluated at 21 days after injury. Fluoresceinisothiocyanate-labelled PI polyamide was distributed into most of the nuclei in the injured artery without any delivery reagents. PI polyamide (100 microg) significantly inhibited neointimal thickening at 21 days after injury by 57%. PI polyamide targeting TGF-beta1 significantly decreased the expression of TGF-beta1 mRNA and protein in the artery at 3 days after injury and also suppressed the expression of connective tissue growth factor (CTGF), fibronectin, collagen type 1, and lectin-like ox-LDL receptor-1 mRNAs. A morphometric analysis showed that PI polyamide targeting TGF-beta1 accelerated re-endothelialization in the injured artery. CONCLUSION These findings suggest that the synthetic PI polyamide targeting the TGF-beta1 promoter may have the potential to suppress neointimal hyperplasia after arterial injury by the down-regulation of TGF-beta1 and CTGF and the reduction of the extracellular matrix. As a result, PI polyamide targeting TGF-beta1 may therefore be a potentially effective agent for the treatment of in-stent restenosis, as a candidate agent for the next-generation DES.


Nature Communications | 2015

Inhibition of KRAS codon 12 mutants using a novel DNA-alkylating pyrrole–imidazole polyamide conjugate

Kiriko Hiraoka; Takahiro Inoue; Rhys Dylan Taylor; Takayoshi Watanabe; Nobuko Koshikawa; Hiroyuki Yoda; Ken-ichi Shinohara; Atsushi Takatori; Hirokazu Sugimoto; Yoshiaki Maru; Tadamichi Denda; Kyoko Fujiwara; Allan Balmain; Toshinori Ozaki; Toshikazu Bando; Hiroshi Sugiyama; Hiroki Nagase

Despite extensive efforts to target mutated RAS proteins, anticancer agents capable of selectively killing tumour cells harbouring KRAS mutations have remained unavailable. Here we demonstrate the direct targeting of KRAS mutant DNA using a synthetic alkylating agent (pyrrole-imidazole polyamide indole-seco-CBI conjugate; KR12) that selectively recognizes oncogenic codon 12 KRAS mutations. KR12 alkylates adenine N3 at the target sequence, causing strand cleavage and growth suppression in human colon cancer cells with G12D or G12V mutations, thus inducing senescence and apoptosis. In xenograft models, KR12 infusions induce significant tumour growth suppression, with low host toxicity in KRAS-mutated but not wild-type tumours. This newly developed approach may be applicable to the targeting of other mutant driver oncogenes in human tumours.

Collaboration


Dive into the Hiroki Nagase's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge