Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroko Fukui is active.

Publication


Featured researches published by Hiroko Fukui.


Chemico-Biological Interactions | 2012

Association of zinc ion release and oxidative stress induced by intratracheal instillation of ZnO nanoparticles to rat lung

Hiroko Fukui; Masanori Horie; Shigehisa Endoh; Haruhisa Kato; Katsuhide Fujita; Keiko Nishio; Lilian Kaede Komaba; Junko Maru; Arisa Miyauhi; Ayako Nakamura; Shinichi Kinugasa; Yasukazu Yoshida; Yoshihisa Hagihara; Hitoshi Iwahashi

Zinc oxide (ZnO) nanoparticles are one of the important industrial nanoparticles. The production of ZnO nanoparticles is increasing every year. On the other hand, it is known that ZnO nanoparticles have strong cytotoxicity. In vitro studies using culture cells revealed that ZnO nanoparticles induce severe oxidative stress. However, the in vivo influence of ZnO nanoparticles is still unclear. In the present study, rat lung was exposed to ZnO nanoparticles by intratracheal instillation, and the influences of ZnO nanoparticles to the lung in the acute phase, particularly oxidative stress, were examined. Additionally, in vitro cellular influences of ZnO nanoparticles were examined using lung carcinoma A549 cells and compared to in vivo examinations. The ZnO nanoparticles used in this study released zinc ion in both dispersions. In the in vivo examinations, ZnO dispersion induced strong oxidative stress in the lung in the acute phase. The oxidative stress induced by the ZnO nanoparticles was stronger than that of a ZnCl(2) solution. Intratracheal instillation of ZnO nanoparticles induced an increase of lipid peroxide, HO-1 and alpha-tocopherol in the lung. The ZnO nanoparticles also induced strong oxidative stress and cell death in culture cells. Intracellular zinc level and reactive oxygen species were increased. These results suggest that ZnO nanoparticles induce oxidative stress in the lung in the acute phase. Intracellular ROS level had a high correlation with intracellular Zn(2+) level. ZnO nanoparticles will stay in the lung and continually release zinc ion, and thus stronger oxidative stress is induced.


Toxicology | 2009

Gene expression profiles in rat lung after inhalation exposure to C60 fullerene particles.

Katsuhide Fujita; Yasuo Morimoto; Akira Ogami; Toshihiko Myojyo; Isamu Tanaka; Manabu Shimada; Wei-Ning Wang; Shigehisa Endoh; Kunio Uchida; Tetsuya Nakazato; Kazuhiro Yamamoto; Hiroko Fukui; Masanori Horie; Yasukazu Yoshida; Hitoshi Iwahashi; Junko Nakanishi

Concern over the influence of nanoparticles on human health has risen due to advances in the development of nanotechnology. We are interested in the influence of nanoparticles on the pulmonary system at a molecular level. In this study, gene expression profiling of the rat lung after whole-body inhalation exposure to C(60) fullerene (0.12mg/m(3); 4.1x10(4) particles/cm(3), 96nm diameter) and ultrafine nickel oxide (Uf-NiO) particles (0.2mg/m(3); 9.2x10(4) particles/cm(3), 59nm diameter) as a positive control were employed to gain insights into these molecular events. In response to C(60) fullerene exposure for 6h a day, for 4 weeks (5 days a week), C(60) fullerene particles were located in alveolar epithelial cells at 3 days post-exposure and engulfed by macrophages at both 3 days and 1 month post-exposures. Gene expression profiles revealed that few genes involved in the inflammatory response, oxidative stress, apoptosis, and metalloendopeptidase activity were up-regulated at both 3 days and 1 month post-exposure. Only some genes associated with the immune system process, including major histocompatibility complex (MHC)-mediated immunity were up-regulated. These results were significantly different from those of Uf-NiO particles which induced high expression of genes associated with chemokines, oxidative stress, and matrix metalloproteinase 12 (Mmp12), suggesting that Uf-NiO particles lead to acute inflammation for the inhalation exposure period, and the damaged tissues were repaired in the post-exposure period. We suggest that C(60) fullerene might not have a severe pulmonary toxicity under the inhalation exposure condition.


Journal of Occupational Health | 2011

Evaluation of Acute Oxidative Stress Induced by NiO Nanoparticles In Vivo and In Vitro

Masanori Horie; Hiroko Fukui; Keiko Nishio; Shigehisa Endoh; Haruhisa Kato; Katsuhide Fujita; Arisa Miyauchi; Ayako Nakamura; Mototada Shichiri; Noriko Ishida; Shinichi Kinugasa; Yasuo Morimoto; Etsuo Niki; Yasukazu Yoshida; Hitoshi Iwahashi

Evaluation of Acute Oxidative Stress Induced by NiO Nanoparticles In Vivo and In Vitro: Masanori Horie, et al. Health Research Institute —


Toxicological Sciences | 2010

Clearance Kinetics of Fullerene C60 Nanoparticles from Rat Lungs after Intratracheal C60 Instillation and Inhalation C60 Exposure

Naohide Shinohara; Tetsuya Nakazato; Moritaka Tamura; Shigehisa Endoh; Hiroko Fukui; Yasuo Morimoto; Toshihiko Myojo; Manabu Shimada; Kazuhiro Yamamoto; Hiroaki Tao; Yasukazu Yoshida; Junko Nakanishi

Fullerene (carbon sixty [C(60)]) has potential industrial and medical applications. In the future, people working in or residing near manufacturing facilities may be exposed to C(60). Therefore, quantitative data on long-term C(60) clearance from the lungs are required. To estimate the clearance rate and deposition fraction of C(60) from inhalation exposure, the C(60) burden in the lungs, liver, and brain of rats was determined after intratracheal instillation and inhalation. Male Wistar rats were intratracheally instilled with different concentrations of a C(60) suspension prepared with Tween 80 (geometric mean [GM] of particle diameter based on number, 18-29 nm; geometric standard deviation [GSD] of particle diameter, 1.5; and doses, 100, 200, and 1000 micrograms per body) or exposed to a C(60) aerosol prepared with nebulizer (GM of particle diameter based on number, 96 nm; GSD of particle diameter, 2.0; and exposure level, 120 μg/m(3)). C(60) burden in the lungs, liver, and brain was determined at various time points (1 h to 6 months) by a newly developed sensitive high-performance liquid chromatography-ultraviolet absorptiometry combined with extraction and concentration of C(60) from the organs. C(60) clearance was evaluated using a 2-compartment model: fast clearance after deposition on lung surface and slow clearance after retention in the epithelium. The detection limit of our analysis method was 8.9 ng/g tissue. Pulmonary C(60) burden decreased with time and depended on the C(60) concentration administered. The concentration of C(60) in the liver and brain was below the detection limit: 8.9 ng/g tissue. The half-life of intratracheally instilled C(60) was 15-28 days. The deposition mass fraction of inhaled C(60) was 0.14. Mode evaluation revealed that most instilled particles could be eliminated by the fast clearance pathway. This finding is consistent with the transmission electron microscopy finding that many particles were present in alveolar macrophages.


Nanotoxicology | 2014

Tissue distribution and clearance of intravenously administered titanium dioxide (TiO2) nanoparticles.

Naohide Shinohara; Nobuko Danno; Takayuki Ichinose; Takeshi Sasaki; Hiroko Fukui; Kazumasa Honda; Masashi Gamo

Abstract The organ-tissue distribution and clearance of Degussa P25 TiO2 nanoparticles were determined after intravenous administration to rats (0.95 mg/kg bodyweight) using an inductively coupled plasma sector field mass spectrometer. The detection limits of Ti analysis, 0.54 and 1.4 ng/mL for blood and urine and 0.35–2.0 ng/g tissue for several organ tissues, enabled determination of tissue distribution and clearance for organs in which Ti content could not be previously determined due to low concentrations. Blood concentrations of TiO2 were 420 and 19 ng/mL at 5 and 15 min after administration, which were equivalent of only 2.8% and 0.13% of the administration dose, respectively. At 6 h, 94%, 2.0%, 0.17%, 0.023%, 0.014% and 0.026% of administered TiO2 was found in the liver, spleen, lung, kidney, heart and blood, respectively. Liver and spleen TiO2 burden was significantly higher in the administration than control group (p < 0.01) and did not decrease up to 30 days after administration, while TiO2 burden in the lung, kidney, heart and blood decreased over time. A two-step decay model was more suitable than a one-step decay model for the decay curves of pulmonary TiO2 burden but did not improve fitting to the decay curves of kidney TiO2 burden. No translocation to the brain was confirmed at a lower detection limit than was applied in previous studies. Ti content in faeces and urine in the TiO2 administration group did not differ from that in the control group.


Inhalation Toxicology | 2012

Comparison of acute oxidative stress on rat lung induced by nano and fine-scale, soluble and insoluble metal oxide particles: NiO and TiO2

Masanori Horie; Hiroko Fukui; Shigehisa Endoh; Junko Maru; Arisa Miyauchi; Mototada Shichiri; Katsuhide Fujita; Etsuo Niki; Yoshihisa Hagihara; Yasukazu Yoshida; Yasuo Morimoto; Hitoshi Iwahashi

The aim of the present study is to understand the association between metal ion release from nickel oxide (NiO) nanoparticles and induction of oxidative stress in the lung. NiO nanoparticles have cytotoxic activity through nickel ion release and subsequent oxidative stress. However, the interaction of oxidative stress and nickel ion release in vivo is still unclear. In the present study, we examined the effect of metal ion release on oxidative stress induced by NiO nanoparticles. Additionally, nano and fine TiO2 particles as insoluble particles were also examined. Rat lung was exposed to NiO and TiO2 nanoparticles by intratracheal instillation. The NiO nanoparticles released Ni2+ in dispersion. Bronchoalveolar lavage fluid (BALF) was collected at 1, 24, 72 h and 1 week after instillation. The lactate dehydrogenase (LDH) and HO-1 levels were elevated at 24 and 72 h after instillation in the animals exposed to the NiO nanoparticles. On the other hand, total hydroxyoctadecadienoic acid (tHODE), which is an oxidative product of linoleic acid, as well as SP-D and α-tochopherol levels were increased at 72 h and 1 week after instillation. Fine NiO particles, and nano and fine TiO2 particles did not show lung injury or oxidative stress from 1 h to 1 week after instillation. These results suggest that Ni2+ release is involved in the induction of oxidative stress by NiO nanoparticles in the lung. Ni2+ release from NiO nanoparticles is an important factor inoxidative stress-related toxicity, not only in vitro but also in vivo.


Nanotoxicology | 2015

Intratracheal instillation of single-wall carbon nanotubes in the rat lung induces time-dependent changes in gene expression

Katsuhide Fujita; Makiko Fukuda; Hiroko Fukui; Masanori Horie; Shigehisa Endoh; Kunio Uchida; Mototada Shichiri; Yasuo Morimoto; Akira Ogami; Hitoshi Iwahashi

Abstract The use of carbon nanotubes in the industry has grown; however, little is known about their toxicological mechanism of action. Single-wall carbon nanotube (SWCNT) suspensions were administered by single intratracheal instillation in rats. Persistence of alveolar macrophage-containing granuloma was observed around the sites of SWCNT aggregation at 90 days post-instillation in 0.2-mg- or 0.4-mg-injected doses per rat. Meanwhile, gene expression profiling revealed that a large number of genes involved in the inflammatory response were markedly upregulated until 90 days or 180 days post-instillation. Subsequently, gene expression patterns were dramatically altered at 365 days post-instillation, and the number of upregulated genes involved in the inflammatory response was reduced. These results suggested that alveolar macrophage-containing granuloma reflected a characteristic of the histopathological transition period from the acute-phase to the subchronic-phase of inflammation, as well as pulmonary acute phase response persistence up to 90 or 180 days after intratracheal instillation in this experimental setting. The expression levels of the genes Ctsk, Gcgr, Gpnmb, Lilrb4, Marco, Mreg, Mt3, Padi1, Slc26a4, Spp1, Tnfsf4 and Trem2 were persistently upregulated in a dose-dependent manner until 365 days post-instillation. In addition, the expression levels of Atp6v0d2, Lpo, Mmp7, Mmp12 and Rnase9 were significantly upregulated until 754 days post-instillation. We propose that these persistently upregulated genes in the chronic-phase response following the acute-phase response act as potential biomarkers in lung tissue after SWCNT instillation. This study provides further insight into the time-dependent changes in genomic expression associated with the pulmonary toxicity of SWCNTs.


Journal of Occupational Health | 2015

Ascorbic acid attenuates acute pulmonary oxidative stress and inflammation caused by zinc oxide nanoparticles

Hiroko Fukui; Hitoshi Iwahashi; Shigehisa Endoh; Keiko Nishio; Yasukazu Yoshida; Yoshihisa Hagihara; Masanori Horie

Ascorbic acid attenuates acute pulmonary oxidative stress and inflammation caused by zinc oxide nanoparticles: Hiroko Fukui, et al. United Graduate School of Agricultural Science, Gifu University


Toxicology | 2014

Dose-dependent clearance kinetics of intratracheally administered titanium dioxide nanoparticles in rat lung

Naohide Shinohara; Yutaka Oshima; Toshio Kobayashi; Nobuya Imatanaka; Makoto Nakai; Takayuki Ichinose; Takeshi Sasaki; Guihua Zhang; Hiroko Fukui; Masashi Gamo

AEROSIL(®) P25 titanium dioxide (TiO2) nanoparticles dispersed in 0.2% disodium phosphate solution were intratracheally administered to male F344 rats at doses of 0 (control), 0.375, 0.75, 1.5, 3.0, and 6.0 mg/kg. The rats were sacrificed under anesthesia at 1 day, 3 days, 7 days, 4 weeks, 13 weeks, and 26 weeks after administration. Ti levels in various pulmonary and extrapulmonary organs were determined using sensitive inductively coupled plasma sector field mass spectrometry. One day after administration, the lungs contained 62-83% of TiO2 administered dose. Twenty-six weeks after administration, the lungs retained 6.6-8.9% of the TiO2 administered at the 0.375, 0.75, and 1.5 mg/kg doses, and 13% and 31% of the TiO2 administered at the 3.0 and 6.0 mg/kg doses, respectively. The pulmonary clearance rate constants from compartment 1, k1, were estimated using a 2-compartment model and were found to be higher for the 0.375 and 0.75 mg/kg doses of TiO2 (0.030/day for both) than for TiO2 doses of 1.5-6.0 mg/kg (0.014-0.022/day). The translocation rate constants from compartment 1 to 2, k12, were estimated to be 0.015 and 0.018/day for the 0.375 and 0.75 mg/kg doses, and 0.0025-0.0092/day for doses of 1.5-6.0mg/kg. The pulmonary clearance rate constants from compartment 2, k2, were estimated to be 0.0086 and 0.0093/day for doses of 0.375 and 0.75 mg/kg, and 0-0.00082/day for 1.5-6.0 mg/kg doses. Translocation of TiO2 from the lungs to the thoracic lymph nodes increased in a time- and dose-dependent manner, accounting for 0.10-3.4% of the administered dose at 26 weeks. The measured thoracic lymph node burdens were a much better fit to the thoracic lymph node burdens estimated assuming translocation from compartment 1 to the thoracic lymph nodes, rather than those estimated assuming translocation from compartment 2 to the thoracic lymph nodes. The translocation rate constants from the lungs to the thoracic lymph nodes, kLung→Lym, were 0.000037-0.00081/day, and these also increased with increasing doses of TiO2. Although a small amount of TiO2 had translocated to the liver by 3 days after the administration (0.0023-0.012% of the highest dose administered, 6.0 mg/kg), translocation to the other extrapulmonary organs was not detected.


Archive | 2009

A Gene Expression Profiling Approach to Study the Influence of Ultrafine Particles on Rat Lungs

Katsuhide Fujita; Yasuo Morimoto; Akira Ogami; Isamu Tanaka; Shigehisa Endoh; Kunio Uchida; Hiroaki Tao; Mikio Akasaka; Masaharu Inada; Kazuhiro Yamamoto; Hiroko Fukui; Mieko Hayakawa; Masanori Horie; Yoshiro Saito; Yasukazu Yoshida; Hitoshi Iwahashi; Etsuo Niki; Junko Nakanishi

In recent years, industrial or commercial products incorporating nanomaterials have triggered concerns for human health. Manufactured nanomaterials are unstable and tend to form secondary particles by agglomeration. Little is known about the cytotoxicity induced by nano-sized secondary particles dispersed in aqueous solution. In the present study, we have attempted to disperse ultrafine nickel oxide particles in water (Uf-NiO), characterize the physicochemical properties, and instill into the trachea of rat lungs. Analysis by inductively couple plasma mass spectrometry (ICP-MS) and transmission electron microscope (TEM) revealed that the Uf-NiO particles began to be cleared from the lungs immediately after treatment, and that low levels of the particles were present at 6 months post-instillation. Genome-wide expression analysis using DNA microarray revealed that intratracheal instillation of Uf-NiO particles led to a rapid increase in the expression of chemokines and genes involved in inflammation. These changes were most pronounced at 1 week post-instillation with Uf-NiO. The expression of Mmp12 mRNA, encoding macrophage metalloelastase 12, was strongly induced immediately following intratracheal instillation. However, expression returned to control levels by 6 months post-instillation expression of various other genes categorized into the detection of chemical stimulus were increased at this time point, at which time the inflammatory response had diminished. These results suggest that residual Uf-NiO in the lungs subacutely initiated distinct cellular events through signal transduction after resolution of the inflammatory response. We conclude that gene expression analysis using DNA microarrays can be extremely useful in assessing the influence of utrafine particles on biological systems.

Collaboration


Dive into the Hiroko Fukui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masanori Horie

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Shigehisa Endoh

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yasukazu Yoshida

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yasuo Morimoto

University of Occupational and Environmental Health Japan

View shared research outputs
Top Co-Authors

Avatar

Katsuhide Fujita

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kunio Uchida

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yoshihisa Hagihara

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Akira Ogami

University of Occupational and Environmental Health Japan

View shared research outputs
Top Co-Authors

Avatar

Junko Nakanishi

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge