Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroko Zaha is active.

Publication


Featured researches published by Hiroko Zaha.


Cancer Biology & Therapy | 2012

Effects of bisphenol A exposure on the proliferation and senescence of normal human mammary epithelial cells

Xian-Yang Qin; Tomokazu Fukuda; Linqing Yang; Hiroko Zaha; Hiromi Akanuma; Qin Zeng; Jun Yoshinaga; Hideko Sone

The carcinogenic activity of bisphenol A (BPA) is responsible for stimulating growth in estrogen-dependent breast cancer tissues, cell lines and rodent studies. However, it is not fully understood how this compound promotes mammary carcinogenesis. In our study, we examined the effect of BPA on cellular proliferation and senescence in human mammary epithelial cells (HMEC). Exposure to BPA for 1 week at the early stage at passage 8 increased the proliferation and sphere size of HMEC at the later stage up to passage 16, suggesting that BPA has the capability to modulate cell growth in breast epithelial cells. Interestingly, the number of human heterochromatin protein-1γ positive cells, which is a marker of senescence, was also increased among BPA-treated cells. Consistent with these findings, the protein levels of both p16 and cyclin E, which are known to induce cellular senescence and promote proliferation, respectively, were increased in BPA-exposed HMEC. Furthermore, DNA methylation levels of genes related to development of most or all tumor types, such as BRCA1, CCNA1, CDKN2A (p16), THBS1, TNFRSF10C and TNFRSF10D, were increased in BPA-exposed HMEC. Our findings in the HMEC model suggested that the genetic and epigenetic alterations by BPA might damage HMEC function and result in complex activities related to cell proliferation and senescence, playing a role in mammary carcinogenesis.


Frontiers in Genetics | 2012

Identification of Stage-Specific Gene Expression Signatures in Response to Retinoic Acid during the Neural Differentiation of Mouse Embryonic Stem Cells

Hiromi Akanuma; Xian-Yang Qin; Reiko Nagano; Tin-Tin Win-Shwe; Satoshi Imanishi; Hiroko Zaha; Jun Yoshinaga; Tomokazu Fukuda; Seiichiroh Ohsako; Hideko Sone

We have previously established a protocol for the neural differentiation of mouse embryonic stem cells (mESCs) as an efficient tool to evaluate the neurodevelopmental toxicity of environmental chemicals. Here, we described a multivariate bioinformatic approach to identify the stage-specific gene sets associated with neural differentiation of mESCs. We exposed mESCs (B6G-2 cells) to 10−8 or 10−7 M of retinoic acid (RA) for 4 days during embryoid body formation and then performed morphological analysis on day of differentiation (DoD) 8 and 36, or genomic microarray analysis on DoD 0, 2, 8, and 36. Three gene sets, namely a literature-based gene set (set 1), an analysis-based gene set (set 2) using self-organizing map and principal component analysis, and an enrichment gene set (set 3), were selected by the combined use of knowledge from literatures and gene information selected from the microarray data. A gene network analysis for each gene set was then performed using Bayesian statistics to identify stage-specific gene expression signatures in response to RA during mESC neural differentiation. Our results showed that RA significantly increased the size of neurosphere, neuronal cells, and glial cells on DoD 36. In addition, the gene network analysis showed that glial fibrillary acidic protein, a neural marker, remarkably up-regulates the other genes in gene set 1 and 3, and Gbx2, a neural development marker, significantly up-regulates the other genes in gene set 2 on DoD 36 in the presence of RA. These findings suggest that our protocol for identification of developmental stage-specific gene expression and interaction is a useful method for the screening of environmental chemical toxicity during neurodevelopmental periods.


PLOS ONE | 2012

Identification of Novel Low-Dose Bisphenol A Targets in Human Foreskin Fibroblast Cells Derived from Hypospadias Patients

Xian-Yang Qin; Yoshiyuki Kojima; Kentaro Mizuno; Katsuhiko Ueoka; Koji Muroya; Mami Miyado; Hiroko Zaha; Hiromi Akanuma; Qin Zeng; Tomokazu Fukuda; Jun Yoshinaga; Junzo Yonemoto; Kenjiro Kohri; Yutaro Hayashi; Maki Fukami; Tsutomu Ogata; Hideko Sone

Background/Purpose The effect of low-dose bisphenol A (BPA) exposure on human reproductive health is still controversial. To better understand the molecular basis of the effect of BPA on human reproductive health, a genome-wide screen was performed using human foreskin fibroblast cells (hFFCs) derived from child hypospadias (HS) patients to identify novel targets of low-dose BPA exposure. Methodology/Principal Findings Gene expression profiles of hFFCs were measured after exposure to 10 nM BPA, 0.01 nM 17β-estradiol (E2) or 1 nM 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for 24 h. Differentially expressed genes were identified using an unpaired Students t test with P value cut off at 0.05 and fold change of more than 1.2. These genes were selected for network generation and pathway analysis using Ingenuity Pathways Analysis, Pathway Express and KegArray. Seventy-one genes (42 downregulated and 29 upregulated) were identified as significantly differentially expressed in response to BPA, among which 43 genes were found to be affected exclusively by BPA compared with E2 and TCDD. Of particular interest, real-time PCR analysis revealed that the expression of matrix metallopeptidase 11 (MMP11), a well-known effector of development and normal physiology, was found to be inhibited by BPA (0.47-fold and 0.37-fold at 10 nM and 100 nM, respectively). Furthermore, study of hFFCs derived from HS and cryptorchidism (CO) patients (n = 23 and 11, respectively) indicated that MMP11 expression was significantly lower in the HS group than in the CO group (0.25-fold, P = 0.0027). Conclusions/Significance This present study suggests that an involvement of BPA in the etiology of HS might be associated with the downregulation of MMP11. Further study to elucidate the function of the novel target genes identified in this study during genital tubercle development might increase our knowledge of the effects of low-dose BPA exposure on human reproductive health.


Journal of Human Genetics | 2012

Association of variants in genes involved in environmental chemical metabolism and risk of cryptorchidism and hypospadias

Xian-Yang Qin; Yoshiyuki Kojima; Kentaro Mizuno; Katsuhiko Ueoka; Francesco Massart; Claudio Spinelli; Hiroko Zaha; Masahiro Okura; Jun Yoshinaga; Junzo Yonemoto; Kenjiro Kohri; Yutaro Hayashi; Tsutomu Ogata; Hideko Sone

We hypothesized that single-nucleotide polymorphisms (SNPs) of genes involved in environmental endocrine disruptors (EEDs) metabolism might influence the risk of male genital malformations. In this study, we explored for association between 384 SNPs in 15 genes (AHR, AHRR, ARNT, ARNT2, NR1I2, RXRA, RXRB, RXRG, CYP1A1, CYP1A2, CYP1B1, CYP2B6, CYP3A4, CYP17A1 and CYP19A1) and risk of cryptorchidism (CO) and hypospadias (HS) in 334 Japanese (JPN) males (141 controls, 95 CO and 98 HS) and 187 Italian (ITA) males (129 controls and 58 CO). In the JPN study group, five SNPs from ARNT2 (rs2278705 and rs5000770), CYP1A2 (rs2069521), CYP17A1 (rs4919686) and NR1I2 (rs2472680) were significantly associated at both allelic and genotypic levels with risk of at least one genital malformation phenotype. In the ITA study group, two SNPs in AHR (rs3757824) and ARNT2 (rs1020397) were significantly associated with risk of CO. Interaction analysis of the positive SNPs using multifactor dimensionality reduction demonstrated that synergistic interaction between rs2472680, rs4919686 and rs5000770 had 62.81% prediction accuracy for CO (P=0.011) and that between rs2069521 and rs2278705 had 69.98% prediction accuracy for HS (P=0.001) in JPN population. In a combined analysis of JPN and ITA population, the most significant multi-locus association was observed between rs5000770 and rs3757824, which had 65.70% prediction accuracy for CO (P=0.055). Our findings indicate that genetic polymorphisms in genes involved in EED metabolism are associated with risk of CO and HS.


Environmental Toxicology | 2013

Prenatal exposure to permethrin influences vascular development of fetal brain and adult behavior in mice offspring

Satoshi Imanishi; Masahiro Okura; Hiroko Zaha; Toshifumi Yamamoto; Hiromi Akanuma; Reiko Nagano; Hidekazu Fujimaki; Hideko Sone

Pyrethroids are one of the most widely used classes of insecticides and show neurotoxic effects that induce oxidative stress in the neonatal rat brain. However, little is still known about effects of prenatal exposure to permethrin on vascular development in fetal brain, central nervous system development, and adult offspring behaviors. In this study, the effects of prenatal exposure to permethrin on the development of cerebral arteries in fetal brains, neurotransmitter in neonatal brains, and locomotor activities in offspring mice were investigated. Permethrin (0, 2, 10, 50, and 75 mg/kg) was orally administered to pregnant females once on gestation day 10.5. The brains of permethrin‐treated fetuses showed altered vascular formation involving shortened lengths of vessels, an increased number of small branches, and, in some cases, insufficient fusion of the anterior communicating arteries in the area of circle of Willis. The prenatal exposure to permethrin altered neocortical and hippocampus thickness in the mid brain and significantly increased norepinephrine and dopamine levels at postnatal day 7 mice. For spontaneous behavior, the standing ability test using a viewing jar and open‐field tests showed significant decrease of the standing ability and locomotor activity in male mice at 8 or 12 weeks of age, respectively. The results suggest that prenatal exposure to permethrin may affect insufficient development of the brain through alterations of vascular development.


Molecular and Cellular Endocrinology | 2007

Estrogen-responsive genes newly found to be modified by TCDD exposure in human cell lines and mouse systems.

Junko Tanaka; Junzo Yonemoto; Hiroko Zaha; Ryoiti Kiyama; Hideko Sone

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) can induce estrogenic action or inhibit estrogen-induced effects in various tissues because of aryl hydrocarbon receptor (AhR)-estrogen receptor (ER) cross-talk. In order to identify the biomarkers of TCDD endocrine disruption, we screened estrogen-responsive genes modified by TCDD exposure using specific cDNA microarrays spotted with estrogen-responsive genes. MCF-7 human breast carcinoma cells and RL95-2 human endometrial carcinoma cells were exposed to TCDD, and an analysis of their gene expression revealed 32 genes exhibiting a significant change. The mRNA expression levels of 27 genes were subsequently verified using real-time RT-PCR. Among these genes, bioinformatic analyses indicated that insulin-like growth factor-binding protein 5 (IGFBP5) gene expression might be influenced by estrogen status. In our animal experiments, IGFBP5 was also shown to be responsive to TCDD exposure in mouse fetuses in utero. These results suggest that TCDD affects the expression levels of a series of estrogen-responsive genes, and follow-up fetal studies in mice indicated that IGFBP5 is useful as a biomarker of TCDD activity.


Journal of Applied Toxicology | 2008

Differences in gene expression and benzo[a]pyrene‐induced DNA adduct formation in the liver of three strains of female mice with identical AhRb2 genotype treated with 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin and/or benzo[a]pyrene

Qing Wu; Junko S. Suzuki; Hiroko Zaha; Tien-Min Lin; Richard E. Peterson; Chiharu Tohyama; Seiichiroh Ohsako

To search for genes whose products modify aryl hydrocarbon receptor (AhR)‐dependent toxicity caused by 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin (TCDD), gene expression profiles in the liver were surveyed using microarrays 24 h after the administration of TCDD to three strains of female mice, BALB/cAnN (BALB), C3H/HeN (C3H) and CBA/JN (CBA) all of identical AhR genotype. The BALB/cAnN strain had a more marked induction of a number of glutathione S‐transferase (GST) sub‐families, particularly the GSTmu gene family, compared with the other two strains. To assess the effects of GSTs induction to metabolize carcinogens, TCDD (40 µg kg−1) was administered to BALB and CBA strains, followed 24 h later by an i.p. injection of low or high dose of benzo[a]pyrene (B[a]P, 50 or 200 mg kg−1). The 32P‐postlabelling analysis showed that administration of TCDD alone failed to induce DNA adduct formation in both BALB and CBA strain mouse livers. The low dose of B[a]P alone produced DNA adduct in the liver of both strains to a similar extent. Treatment with TCDD 24 h before the low dose of B[a]P suppressed the formation of B[a]P‐induced DNA‐adduct more markedly in the BALB strain compared with the CBA strain. Taken together, these findings show that TCDD treatment causes strain‐specific alterations in gene expression and B[a]P‐induced DNA adduct formation in the liver of female mice of the same AhRb2 genotype. Furthermore, it suggests that TCDD‐treated female mice of the BALB strain may have genes whose products modify the toxicity of B[a]P as evidenced by TCDD‐induced alterations in B[a]P‐DNA adduct formation. Copyright


PLOS ONE | 2012

Individual Variation of the Genetic Response to Bisphenol A in Human Foreskin Fibroblast Cells Derived from Cryptorchidism and Hypospadias Patients

Xian Yang Qin; Hideko Sone; Yoshiyuki Kojima; Kentaro Mizuno; Katsuhiko Ueoka; Koji Muroya; Mami Miyado; Aya Hisada; Hiroko Zaha; Tomokazu Fukuda; Jun Yoshinaga; Junzo Yonemoto; Kenjiro Kohri; Yutaro Hayashi; Maki Fukami; Tsutomu Ogata

Background/Purpose We hypothesized that polymorphic differences among individuals might cause variations in the effect that environmental endocrine disruptors (EEDs) have on male genital malformations (MGMs). In this study, individual variation in the genetic response to low-dose bisphenol A (BPA) was investigated in human foreskin fibroblast cells (hFFCs) derived from child cryptorchidism (CO) and hypospadias (HS) patients. Methodology/Principal Findings hFFCs were collected from control children without MGMs (n = 5) and child CO and HS patients (n = 8 and 21, respectively). BPA exposure (10 nM) was found to inhibit matrix metalloproteinase-11 (MMP11) expression in the HS group (0.74-fold, P = 0.0034) but not in the control group (0.93-fold, P = 0.84) and CO group (0.94-fold, P = 0.70). Significantly lower levels of MMP11 expression were observed in the HS group compared with the control group (0.80-fold, P = 0.0088) and CO group (0.79-fold, P = 0.039) in response to 10 nM BPA. The effect of single-nucleotide polymorphism rs5000770 (G>A), located within the aryl hydrocarbon receptor nuclear translocator 2 (ARNT2) locus, on individual sensitivity to low-dose BPA was investigated in the HS group. A significant difference in neurotensin receptor 1 (NTSR1) expression in response to 10 nM BPA was observed between AA and AG/GG groups (n = 6 and 15, respectively. P = 0.031). However, no significant difference in ARNT2 expression was observed (P = 0.18). Conclusions/Significance This study advances our understanding of the specificity of low-dose BPA effects on human reproductive health. Our results suggest that genetic variability among individuals affects susceptibility to the effects of EEDs exposure as a potential cause of HS.


Biology of Reproduction | 2010

Comparative Contribution of the Aryl Hydrocarbon Receptor Gene to Perinatal Stage Development and Dioxin-Induced Toxicity Between the Urogenital Complex and Testis in the Mouse

Seiichiroh Ohsako; Noriho Honda Fukuzawa; Ryuta Ishimura; Takashige Kawakami; Qing Wu; Reiko Nagano; Hiroko Zaha; Hideko Sone; Junzo Yonemoto; Chiharu Tohyama

Abstract TCDD (2,3,7,8-tetrachlorodebenzo-p-dioxin) requires the presence of the aryl hydrocarbon receptor (Ahr) gene for its toxic effects, such as reproductive disorders in male offspring of maternally exposed rats and mice. To study the involvement of the Ahr gene in producing the toxic phenotype with respect to testicular development, we administered a relatively high dose of TCDD to mice with three different maternally derived Ahr genotypic traits, and then compared several Ahr-dependent alterations among male reproductive systems on Postnatal Day 14. Reduction in anogenital distance and expression of prostatic epithelial genes in the urogenital complex (UGC) were detected in Ahr+/+ and Ahr+/− mice exposed to TCDD, whereas no difference was observed in Ahr−/− mice. In situ hybridization revealed the absence of probasin mRNA expression in the prostate epithelium, despite the obvious development of prostatic lobes in TCDD-exposed mice. In contrast to obvious prostatic dysfunction and induction of cytochrome P450 (CYP) family genes in the UGC by TCDD, no alterations in testicular functions were observed in germ cell/Sertoli cell/interstitial cell marker gene expression or CYP family induction. No histopathological changes were observed among the three genotypes and between control and TCDD-exposed mice. Therefore, mouse external genitalia and prostatic development are much more sensitive to TCDD treatment than testis. Further, the Ahr gene, analyzed in this study, does not significantly contribute to testicular function during perinatal and immature stages, and the developing mouse testis appears to be quite resistant to TCDD exposure.


Neuroscience Research | 2009

Development of an image profiling system to evaluate for the effects of chemicals in neural differentiation from mES cells

Reiko Nagano; Hiromi Akanuma; Shigeru Koikegami; Satoshi Imanishi; Wataru Miyazaki; Masahiro Okura; Hiroko Zaha; Seiichiroh Ohsako; Hideko Sone

Magnetoencephalography (MEG) directly measures the magnetic field caused by neural current activity, with a high temporal resolution. However, its amplitude is very weak and contaminated by various artifacts. One of the such an artifact is caused by heartbeat. In this study, we measured MEG and electrocardiogram (ECG) simultaneously. MEG was averaged with respect to an onset of ECG, that is, the peak of R-wave. Then, we applied equivalent current dipole (ECD) method to estimate current sources of artifacts caused by heartbeat. In addition, we propose a probabilistic model to remove such artifacts and applied to artificial data in order to confirm the efficiency of the method.

Collaboration


Dive into the Hiroko Zaha's collaboration.

Top Co-Authors

Avatar

Hideko Sone

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar

Junzo Yonemoto

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reiko Nagano

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar

Hiromi Akanuma

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar

Xian-Yang Qin

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar

Masahiro Okura

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge