Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiromi Kazama is active.

Publication


Featured researches published by Hiromi Kazama.


Nucleic Acids Research | 2011

Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group

Takuro Nunoura; Yoshihiro Takaki; Jungo Kakuta; Shinro Nishi; Junichi Sugahara; Hiromi Kazama; Gab Joo Chee; Masahira Hattori; Akio Kanai; Haruyuki Atomi; Ken Takai; Hideto Takami

The domain Archaea has historically been divided into two phyla, the Crenarchaeota and Euryarchaeota. Although regarded as members of the Crenarchaeota based on small subunit rRNA phylogeny, environmental genomics and efforts for cultivation have recently revealed two novel phyla/divisions in the Archaea; the ‘Thaumarchaeota’ and ‘Korarchaeota’. Here, we show the genome sequence of Candidatus ‘Caldiarchaeum subterraneum’ that represents an uncultivated crenarchaeotic group. A composite genome was reconstructed from a metagenomic library previously prepared from a microbial mat at a geothermal water stream of a sub-surface gold mine. The genome was found to be clearly distinct from those of the known phyla/divisions, Crenarchaeota (hyperthermophiles), Euryarchaeota, Thaumarchaeota and Korarchaeota. The unique traits suggest that this crenarchaeotic group can be considered as a novel archaeal phylum/division. Moreover, C. subterraneum harbors an ubiquitin-like protein modifier system consisting of Ub, E1, E2 and small Zn RING finger family protein with structural motifs specific to eukaryotic system proteins, a system clearly distinct from the prokaryote-type system recently identified in Haloferax and Mycobacterium. The presence of such a eukaryote-type system is unprecedented in prokaryotes, and indicates that a prototype of the eukaryotic protein modifier system is present in the Archaea.


Applied and Environmental Microbiology | 2010

Archaeal Diversity and Distribution along Thermal and Geochemical Gradients in Hydrothermal Sediments at the Yonaguni Knoll IV Hydrothermal Field in the Southern Okinawa Trough

Takuro Nunoura; Hanako Oida; Miwako Nakaseama; Ayako Kosaka; Satoru B. Ohkubo; Toru Kikuchi; Hiromi Kazama; Shoko Hosoi-Tanabe; Ko-ichi Nakamura; Masataka Kinoshita; Hisako Hirayama; Fumio Inagaki; Urumu Tsunogai; Jun-ichiro Ishibashi; Ken Takai

ABSTRACT A variety of archaeal lineages have been identified using culture-independent molecular phylogenetic surveys of microbial habitats occurring in deep-sea hydrothermal environments such as chimney structures, sediments, vent emissions, and chemosynthetic macrofauna. With the exception of a few taxa, most of these archaea have not yet been cultivated, and their physiological and metabolic traits remain unclear. In this study, phylogenetic diversity and distribution profiles of the archaeal genes encoding small subunit (SSU) rRNA, methyl coenzyme A (CoA) reductase subunit A, and the ammonia monooxygenase large subunit were characterized in hydrothermally influenced sediments at the Yonaguni Knoll IV hydrothermal field in the Southern Okinawa Trough. Sediment cores were collected at distances of 0.5, 2, or 5 m from a vent emission (90°C). A moderate temperature gradient extends both horizontally and vertically (5 to 69°C), indicating the existence of moderate mixing between the hydrothermal fluid and the ambient sediment pore water. The mixing of reductive hot hydrothermal fluid and cold ambient sediment pore water establishes a wide spectrum of physical and chemical conditions in the microbial habitats that were investigated. Under these different physico-chemical conditions, variability in archaeal phylotype composition was observed. The relationship between the physical and chemical parameters and the archaeal phylotype composition provides important insight into the ecophysiological requirements of uncultivated archaeal lineages in deep-sea hydrothermal vent environments, giving clues for approximating culture conditions to be used in future culturing efforts.


Microbes and Environments | 2012

Microbial Diversity in Deep-sea Methane Seep Sediments Presented by SSU rRNA Gene Tag Sequencing

Takuro Nunoura; Yoshihiro Takaki; Hiromi Kazama; Miho Hirai; Juichiro Ashi; Hiroyuki Imachi; Ken Takai

Microbial community structures in methane seep sediments in the Nankai Trough were analyzed by tag-sequencing analysis for the small subunit (SSU) rRNA gene using a newly developed primer set. The dominant members of Archaea were Deep-sea Hydrothermal Vent Euryarchaeotic Group 6 (DHVEG 6), Marine Group I (MGI) and Deep Sea Archaeal Group (DSAG), and those in Bacteria were Alpha-, Gamma-, Delta- and Epsilonproteobacteria, Chloroflexi, Bacteroidetes, Planctomycetes and Acidobacteria. Diversity and richness were examined by 8,709 and 7,690 tag-sequences from sediments at 5 and 25 cm below the seafloor (cmbsf), respectively. The estimated diversity and richness in the methane seep sediment are as high as those in soil and deep-sea hydrothermal environments, although the tag-sequences obtained in this study were not sufficient to show whole microbial diversity in this analysis. We also compared the diversity and richness of each taxon/division between the sediments from the two depths, and found that the diversity and richness of some taxa/divisions varied significantly along with the depth.


Fems Microbiology Letters | 2009

Development of 16S rRNA gene‐targeted primers for detection of archaeal anaerobic methanotrophs (ANMEs)

Ai Miyashita; Hanako Mochimaru; Hiromi Kazama; Akiyoshi Ohashi; Takashi Yamaguchi; Takuro Nunoura; Koki Horikoshi; Ken Takai; Hiroyuki Imachi

Uncultured archaeal anaerobic methanotrophs (ANMEs) are known to operate the anaerobic oxidation of methane process, an important sink for the greenhouse gas methane in natural environments. In this study, we designed 16S rRNA gene-specific primers for each of the phylogenetic groups of ANMEs (ANME-1, Guaymas Basin hydrothermal sediment clones group within the ANME-1, ANME-2a, ANME-2b, ANME-2c and ANME-3) based on previously reported sequences. The newly designed primers were used for the detection of the various groups of ANMEs in the sulphate-limited anaerobic environmental samples, i.e. methanogenic sludges, rice field soils, lotus field sediments and natural gas fields. The ANME 16S rRNA gene sequences were detected only in a natural gas field sample among the environments examined in this study and were of the ANME-1 and -2c groups. In addition, the quantitative real-time PCR analysis using the designed primers showed that abundances of ANME-1 and -2c were estimated to be <0.02% of the total prokaryotic 16S rRNA gene community. The newly designed ANME group-specific primers in this study may be useful to survey the distribution and quantitative determination of ANMEs.


Microbes and Environments | 2013

Isolation and characterization of a thermophilic, obligately anaerobic and heterotrophic marine Chloroflexi bacterium from a Chloroflexi-dominated microbial community associated with a Japanese shallow hydrothermal system, and proposal for Thermomarinilinea lacunofontalis gen. nov., sp. nov.

Takuro Nunoura; Miho Hirai; Masayuki Miyazaki; Hiromi Kazama; Hiroko Makita; Hisako Hirayama; Yasuo Furushima; Hiroyuki Yamamoto; Hiroyuki Imachi; Ken Takai

A novel marine thermophilic and heterotrophic Anaerolineae bacterium in the phylum Chloroflexi, strain SW7T, was isolated from an in situ colonization system deployed in the main hydrothermal vent of the Taketomi submarine hot spring field located on the southern part of Yaeyama Archipelago, Japan. The microbial community associated with the hydrothermal vent was predominated by thermophilic heterotrophs such as Thermococcaceae and Anaerolineae, and the next dominant population was thermophilic sulfur oxidizers. Both aerobic and anaerobic hydrogenotrophs including methanogens were detected as minor populations. During the culture-dependent viable count analysis in this study, an Anaerolineae strain SW7T was isolated from an enrichment culture at a high dilution rate. Strain SW7T was an obligately anaerobic heterotroph that grew with fermentation and had non-motile thin rods 3.5–16.5 μm in length and 0.2 μm in width constituting multicellular filaments. Growth was observed between 37–65°C (optimum 60°C), pH 5.5–7.3 (optimum pH 6.0), and 0.5–3.5% (w/v) NaCl concentration (optimum 1.0%). Based on the physiological and phylogenetic features of a new isolate, we propose a new species representing a novel genus Thermomarinilinea: the type strain of Thermomarinilinea lacunofontalis sp. nov., is SW7T (=JCM15506T=KCTC5908T).


Applied and Environmental Microbiology | 2012

Spatial Distribution of Viruses Associated with Planktonic and Attached Microbial Communities in Hydrothermal Environments

Yukari Yoshida-Takashima; Takuro Nunoura; Hiromi Kazama; Takuroh Noguchi; Kazuhiro Inoue; H. Akashi; Toshiro Yamanaka; Tomohiro Toki; Masahiro Yamamoto; Yasuo Furushima; Yuichiro Ueno; Hiroyuki Yamamoto; Ken Takai

ABSTRACT Viruses play important roles in marine surface ecosystems, but little is known about viral ecology and virus-mediated processes in deep-sea hydrothermal microbial communities. In this study, we examined virus-like particle (VLP) abundances in planktonic and attached microbial communities, which occur in physical and chemical gradients in both deep and shallow submarine hydrothermal environments (mixing waters between hydrothermal fluids and ambient seawater and dense microbial communities attached to chimney surface areas or macrofaunal bodies and colonies). We found that viruses were widely distributed in a variety of hydrothermal microbial habitats, with the exception of the interior parts of hydrothermal chimney structures. The VLP abundance and VLP-to-prokaryote ratio (VPR) in the planktonic habitats increased as the ratio of hydrothermal fluid to mixing water increased. On the other hand, the VLP abundance in attached microbial communities was significantly and positively correlated with the whole prokaryotic abundance; however, the VPRs were always much lower than those for the surrounding hydrothermal waters. This is the first report to show VLP abundance in the attached microbial communities of submarine hydrothermal environments, which presented VPR values significantly lower than those in planktonic microbial communities reported before. These results suggested that viral lifestyles (e.g., lysogenic prevalence) and virus interactions with prokaryotes are significantly different among the planktonic and attached microbial communities that are developing in the submarine hydrothermal environments.


PLOS ONE | 2014

Physiological and genomic features of a novel sulfur-oxidizing gammaproteobacterium belonging to a previously uncultivated symbiotic lineage isolated from a hydrothermal vent.

Takuro Nunoura; Yoshihiro Takaki; Hiromi Kazama; Jungo Kakuta; Shigeru Shimamura; Hiroko Makita; Miho Hirai; Masayuki Miyazaki; Ken Takai

Strain Hiromi 1, a sulfur-oxidizing gammaproteobacterium was isolated from a hydrothermal vent chimney in the Okinawa Trough and represents a novel genus that may include a phylogenetic group found as endosymbionts of deep-sea gastropods. The SSU rRNA gene sequence similarity between strain Hiromi 1 and the gastropod endosymbionts was approximately 97%. The strain was shown to grow both chemolithoautotrophically and chemolithoheterotrophically with an energy metabolism of sulfur oxidation and O2 or nitrate reduction. Under chemolithoheterotrophic growth conditions, the strain utilized organic acids and proteinaceous compounds as the carbon and/or nitrogen sources but not the energy source. Various sugars did not support growth as a sole carbon source. The observation of chemolithoheterotrophy in this strain is in line with metagenomic analyses of endosymbionts suggesting the occurrence of chemolithoheterotrophy in gammaproteobacterial symbionts. Chemolithoheterotrophy and the presence of homologous genes for virulence- and quorum sensing-related functions suggest that the sulfur-oxidizing chomolithotrophic microbes seek animal bodies and microbial biofilm formation to obtain supplemental organic carbons in hydrothermal ecosystems.


Environmental Microbiology | 2016

Variance and potential niche separation of microbial communities in subseafloor sediments off Shimokita Peninsula, Japan.

Takuro Nunoura; Yoshihiro Takaki; Shigeru Shimamura; Jungo Kakuta; Hiromi Kazama; Miho Hirai; Noriaki Masui; Hitoshi Tomaru; Yuki Morono; Hiroyuki Imachi; Fumio Inagaki; Ken Takai

Subseafloor pelagic sediments with high concentrations of organic matter form habitats for diverse microorganisms. Here, we determined depth profiles of genes for SSU rRNA, mcrA, dsrA and amoA from just beneath the seafloor to 363.3 m below the seafloor (mbsf) using core samples obtained from the forearc basin off the Shimokita Peninsula. The molecular profiles were combined with data on lithostratigraphy, depositional age, sedimentation rate and pore-water chemistry. The SSU rRNA gene tag structure and diversity changed at around the sulfate-methane transition zone (SMTZ), whereas the profiles varied further with depth below the SMTZ, probably in connection with the variation in pore-water chemistry. The depth profiles of diversity and abundance of dsrA, a key gene for sulfate reduction, suggested the possible niche separations of sulfate-reducing populations, even below the SMTZ. The diversity and abundance patterns of mcrA, a key gene for methanogenesis/anaerobic methanotrophy, suggested a stratified distribution and separation of anaerobic methanotrophy and hydrogenotrophic or methylotrophic methanogensis below the SMTZ. This study provides novel insights into the relationships between the composition and function of microbial communities and the chemical environment in the nutrient-rich continental margin subseafloor sediments, which may result in niche separation and variability in subseafloor microbial populations.


PLOS ONE | 2016

Macrolide Antibiotics Exhibit Cytotoxic Effect under Amino Acid-Depleted Culture Condition by Blocking Autophagy Flux in Head and Neck Squamous Cell Carcinoma Cell Lines

Kazuhiro Hirasawa; Shota Moriya; Kana Miyahara; Hiromi Kazama; Ayako Hirota; Jun Takemura; Akihisa Abe; Masato Inazu; Masaki Hiramoto; Kiyoaki Tsukahara; Keisuke Miyazawa

Autophagy, a self-digestive system for cytoplasmic components, is required to maintain the amino acid pool for cellular homeostasis. We previously reported that the macrolide antibiotics azithromycin (AZM) and clarithromycin (CAM) have an inhibitory effect on autophagy flux, and they potently enhance the cytocidal effect of various anticancer reagents in vitro. This suggests that macrolide antibiotics can be used as an adjuvant for cancer chemotherapy. Since cancer cells require a larger metabolic demand than normal cells because of their exuberant growth, upregulated autophagy in tumor cells has now become the target for cancer therapy. In the present study, we examined whether macrolides exhibit cytotoxic effect under an amino acid-starving condition in head and neck squamous cancer cell lines such as CAL 27 and Detroit 562 as models of solid tumors with an upregulated autophagy in the central region owing to hypovascularity. AZM and CAM induced cell death under the amino acid-depleted (AAD) culture condition in these cell lines along with CHOP upregulation, although they showed no cytotoxicity under the complete culture medium. CHOP knockdown by siRNA in the CAL 27 cells significantly suppressed macrolide-induced cell death under the AAD culture condition. CHOP-/- murine embryonic fibroblast (MEF) cell lines also attenuated AZM-induced cell death compared with CHOP+/+ MEF cell lines. Using a tet-off atg5 MEF cell line, knockout of atg5, an essential gene for autophagy, also induced cell death and CHOP in the AAD culture medium but not in the complete culture medium. This suggest that macrolide-induced cell death via CHOP induction is dependent on autophagy inhibition. The cytotoxicity of macrolide with CHOP induction was completely cancelled by the addition of amino acids in the culture medium, indicating that the cytotoxicity is due to the insufficient amino acid pool. These data suggest the possibility of using macrolides for “tumor-starving therapy”.


Applied and Environmental Microbiology | 2009

Archaeal diversity and distribution along thermal and geochemical gradients in hydrothermal sediments at the Yonaguni Knoll IV, the Southern Okinawa Trough

Takuro Nunoura; Hanako Oida; Miwako Nakaseama; Ayako Kosaka; Satoru B. Ohkubo; Takashi Kikuchi; Hiromi Kazama; S. H Tanabe; Koshiro Nakamura; Mitsuhiro Kinoshita; Hisako Hirayama; Fumio Inagaki; Urumu Tsunogai; Jun-ichiro Ishibashi; Ken Takai

Collaboration


Dive into the Hiromi Kazama's collaboration.

Top Co-Authors

Avatar

Ken Takai

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Takuro Nunoura

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Miho Hirai

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yoshihiro Takaki

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hiroyuki Imachi

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jungo Kakuta

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Fumio Inagaki

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hiroko Makita

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hisako Hirayama

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Masayuki Miyazaki

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge