Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiromi Miki is active.

Publication


Featured researches published by Hiromi Miki.


Cell | 2004

Generation of Pluripotent Stem Cells from Neonatal Mouse Testis

Mito Kanatsu-Shinohara; Kimiko Inoue; Jiyoung Lee; Momoko Yoshimoto; Narumi Ogonuki; Hiromi Miki; Shiro Baba; Takeo Kato; Yasuhiro Kazuki; Shinya Toyokuni; Megumi Toyoshima; Ohtsura Niwa; Mitsuo Oshimura; Toshio Heike; Tatsutoshi Nakahata; Fumitoshi Ishino; Atsuo Ogura; Takashi Shinohara

Although germline cells can form multipotential embryonic stem (ES)/embryonic germ (EG) cells, these cells can be derived only from embryonic tissues, and such multipotent cells have not been available from neonatal gonads. Here we report the successful establishment of ES-like cells from neonatal mouse testis. These ES-like cells were phenotypically similar to ES/EG cells except in their genomic imprinting pattern. They differentiated into various types of somatic cells in vitro under conditions used to induce the differentiation of ES cells and produced teratomas after inoculation into mice. Furthermore, these ES-like cells formed germline chimeras when injected into blastocysts. Thus, the capacity to form multipotent cells persists in neonatal testis. The ability to derive multipotential stem cells from the neonatal testis has important implications for germ cell biology and opens the possibility of using these cells for biotechnology and medicine.


Biology of Reproduction | 2003

Long-Term Proliferation in Culture and Germline Transmission of Mouse Male Germline Stem Cells

Mito Kanatsu-Shinohara; Narumi Ogonuki; Kimiko Inoue; Hiromi Miki; Atsuo Ogura; Shinya Toyokuni; Takashi Shinohara

Abstract Spermatogenesis is a complex process that originates in a small population of spermatogonial stem cells. Here we report the in vitro culture of spermatogonial stem cells that proliferate for long periods of time. In the presence of glial cell line-derived neurotrophic factor, epidermal growth factor, basic fibroblast growth factor, and leukemia inhibitory factor, gonocytes isolated from neonatal mouse testis proliferated over a 5-month period (>1014-fold) and restored fertility to congenitally infertile recipient mice following transplantation into seminiferous tubules. Long-term spermatogonial stem cell culture will be useful for studying spermatogenesis mechanism and has important implications for developing new technology in transgenesis or medicine.


Nature Genetics | 2006

Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality

Ryuichi Ono; Kenji Nakamura; Kimiko Inoue; Mie Naruse; Takako Usami; Noriko Wakisaka-Saito; Toshiaki Hino; Rika Suzuki-Migishima; Narumi Ogonuki; Hiromi Miki; Takashi Kohda; Atsuo Ogura; Minesuke Yokoyama; Tomoko Kaneko-Ishino; Fumitoshi Ishino

By comparing mammalian genomes, we and others have identified actively transcribed Ty3/gypsy retrotransposon-derived genes with highly conserved DNA sequences and insertion sites. To elucidate the functions of evolutionarily conserved retrotransposon-derived genes in mammalian development, we produced mice that lack one of these genes, Peg10 (paternally expressed 10), which is a paternally expressed imprinted gene on mouse proximal chromosome 6. The Peg10 knockout mice showed early embryonic lethality owing to defects in the placenta. This indicates that Peg10 is critical for mouse parthenogenetic development and provides the first direct evidence of an essential role of an evolutionarily conserved retrotransposon-derived gene in mammalian development.


Biology of Reproduction | 2005

Long-Term Culture of Mouse Male Germline Stem Cells under Serum- or Feeder-Free Conditions

Mito Kanatsu-Shinohara; Hiromi Miki; Kimiko Inoue; Narumi Ogonuki; Shinya Toyokuni; Atsuo Ogura; Takashi Shinohara

Abstract Spermatogonial stem cells are the only stem cells in the body that transmit genetic information to the next generation. These cells can be cultured for extended periods in the presence of serum and feeder cells. However, little is known about factors that regulate self-renewal division of spermatogonial stem cells. In this investigation we examined the possibility of establishing culture systems for spermatogonial stem cells that lack serum or a feeder cell layer. Spermatogonial stem cells could expand in serum-free conditions on mouse embryonic fibroblasts (MEFs), or were successfully cultivated without feeder cells on a laminin-coated plate. However, they could not expand when both serum and feeder cells were absent. Although the cells cultured on laminin differed phenotypically from those on feeder cells, they grew exponentially for at least 6 mo, and produced normal, fertile progeny following transplantation into infertile mouse testis. This culture system will provide a new opportunity for understanding the regulatory mechanism that governs spermatogonial stem cells.


Development | 2007

Akt mediates self-renewal division of mouse spermatogonial stem cells

Ji-Young Lee; Mito Kanatsu-Shinohara; Kimiko Inoue; Narumi Ogonuki; Hiromi Miki; Shinya Toyokuni; Tohru Kimura; Toru Nakano; Atsuo Ogura; Takashi Shinohara

Spermatogonial stem cells have unique properties to self-renew and support spermatogenesis throughout their lifespan. Although glial cell line-derived neurotrophic factor (GDNF) has recently been identified as a self-renewal factor for spermatogonial stem cells, the molecular mechanism of spermatogonial stem cell self-renewal remains unclear. In the present study, we assessed the role of the phosphoinositide-3 kinase (PI3K)-Akt pathway using a germline stem (GS) cell culture system that allows in vitro expansion of spermatogonial stem cells. Akt was rapidly phosphorylated when GDNF was added to the GS cell culture, and the addition of a chemical inhibitor of PI3K prevented GS cell self-renewal. Furthermore, conditional activation of the myristoylated form of Akt-Mer (myr-Akt-Mer) by 4-hydroxy-tamoxifen induced logarithmic proliferation of GS cells in the absence of GDNF for at least 5 months. The myr-Akt-Mer GS cells expressed spermatogonial markers and retained androgenetic imprinting patterns. In addition, they supported spermatogenesis and generated offspring following spermatogonial transplantation into the testes of infertile recipient mice, indicating that they are functionally normal. These results demonstrate that activation of the PI3K-Akt pathway plays a central role in the self-renewal division of spermatogonial stem cells.


Development | 2005

Genetic and epigenetic properties of mouse male germline stem cells during long-term culture

Mito Kanatsu-Shinohara; Narumi Ogonuki; Tomohiko Iwano; Ji-Young Lee; Yasuhiro Kazuki; Kimiko Inoue; Hiromi Miki; Masanori Takehashi; Shinya Toyokuni; Yoichi Shinkai; Mitsuo Oshimura; Fumitoshi Ishino; Atsuo Ogura; Takashi Shinohara

Although stem cells are believed to divide infinitely by self-renewal division, there is little evidence that demonstrates their infinite replicative potential. Spermatogonial stem cells are the founder cell population for spermatogenesis. Recently, in vitro culture of spermatogonial stem cells was described. Spermatogonial stem cells can be expanded in vitro in the presence of glial cell line-derived neurotrophic factor (GDNF), maintaining the capacity to produce spermatogenesis after transplantation into testis. Here, we examined the stability and proliferative capacity of spermatogonial stem cells using cultured cells. Spermatogonial stem cells were cultured over 2 years and achieved ∼1085-fold expansion. Unlike other germline cells that often acquire genetic and epigenetic changes in vitro, spermatogonial stem cells retained the euploid karyotype and androgenetic imprint during the 2-year experimental period, and produced normal spermatogenesis and fertile offspring. However, the telomeres in spermatogonial stem cells gradually shortened during culture, suggesting that they are not immortal. Nevertheless, the remarkable stability and proliferative potential of spermatogonial stem cells suggest that they have a unique machinery to prevent transmission of genetic and epigenetic damages to the offspring, and these characteristics make them an attractive target for germline modification.


Biology of Reproduction | 2008

Pluripotency of a Single Spermatogonial Stem Cell in Mice

Mito Kanatsu-Shinohara; Jiyoung Lee; Kimiko Inoue; Narumi Ogonuki; Hiromi Miki; Shinya Toyokuni; Masahito Ikawa; Tomoyuki Nakamura; Atsuo Ogura; Takashi Shinohara

Abstract Although pluripotent stem cells were recently discovered in postnatal testis, attempts to analyze their developmental potential have led to conflicting claims that spermatogonial stem cells are pluripotent or that they lose spermatogenic potential after conversion into pluripotent stem cells. To examine this issue, we analyzed the developmental fate of a single spermatogonial stem cell that appeared during transfection experiments. After transfection of a neomycin-resistance gene into germline stem cells, we obtained an embryonic stem-like, multipotent germline stem cell line. Southern blot analysis revealed that the germline stem and multipotent germline stem clones have the same transgene integration pattern, demonstrating their identical origin. The two lines, however, have different DNA methylation patterns. The multipotent germline stem cells formed chimeras after blastocyst injection but did not produce sperm after germ cell transplantation, whereas the germline stem cells could produce only spermatozoa and did not differentiate into somatic cells. Interestingly, the germline stem cells expressed several transcription factors (Pou5f1, Sox2, Myc, and Klf4) required for reprogramming fibroblasts into a pluripotent state, suggesting that they are potentially pluripotent. Thus, our study provides evidence that a single spermatogonial stem cell can acquire pluripotentiality but that conversion into a pluripotent cell type is accompanied by loss of spermatogenic potential.


Current Biology | 2005

Generation of cloned mice by direct nuclear transfer from natural killer T cells

Kimiko Inoue; Hiroshi Wakao; Narumi Ogonuki; Hiromi Miki; Ken-ichiro Seino; Rika Nambu-Wakao; Shinichi Noda; Hiroyuki Miyoshi; Haruhiko Koseki; Masaru Taniguchi; Atsuo Ogura

Cloning mammals by nuclear transfer (NT) remains inefficient. One fundamental question is whether clones have really been derived from differentiated cells rather than from rare stem cells present in donor-cell samples. To date, cells, such as mature lymphocytes, with genetic differentiation markers have been cloned to generate mice only via a two-step NT involving embryonic stem (ES) cell generation and tetraploid complementation [1, 2 and 3]. Here, we show that the genome of a unique T-cell population, natural killer T (NKT) cells, can be fully reprogrammed by a single-step NT. The pups and their placentas possessed the rearranged TCR loci specific for NKT cells. The NKT-cell-cloned embryos had a high developmental potential in vitro: Most (71%) developed to the morula/blastocyst stage, in marked contrast to embryos from peripheral blood T cells (12%; p < 1 x 10(-25)). Furthermore, ES cell lines were efficiently established from these NKT-cell blastocysts. These findings clearly indicate a high level of plasticity in the NKT-cell genome. Thus, differentiation of the genome is not always a barrier to NT cloning for either reproductive or therapeutic purposes, so we can now postulate that at least some mammals cloned to date have indeed been derived from differentiated donor cells.


Journal of Cell Science | 2006

Inefficient reprogramming of the hematopoietic stem cell genome following nuclear transfer

Kimiko Inoue; Narumi Ogonuki; Hiromi Miki; Michiko Hirose; Shinichi Noda; Jin-Moon Kim; Fugaku Aoki; Hiroyuki Miyoshi; Atsuo Ogura

In general, cloning undifferentiated preimplantation embryos (blastomeres) or embryonic stem cells is more efficient than cloning differentiated somatic cells. Therefore, there has been an assumption that tissue-specific stem cells might serve as efficient donors for nuclear transfer because of the undifferentiated state of their genome. Here, we show that this is not the case with adult hematopoietic stem cells (HSCs). Although we have demonstrated for the first time that mouse HSCs can be cloned to generate offspring, the birth rates (0-0.7%) were lowest among the clones tested (cumulus, immature Sertoli and fibroblast cells). Only 6% of reconstructed embryos reached the morula or blastocyst stage in vitro (versus 46% for cumulus clones; P<5×10-10). Transcription and gene expression analyses of HSC clone embryos revealed that they initiated zygotic gene activation (ZGA) at the appropriate timing, but failed to activate five out of six important embryonic genes examined, including Hdac1 (encoding histone deacetylase 1), a key regulator of subsequent ZGA. These results suggest that the HSC genome has less plasticity than we imagined, at least in terms of reprogrammability in the ooplasm after nuclear transfer.


Development | 2004

Spermatogenesis from epiblast and primordial germ cells following transplantation into postnatal mouse testis

Shinichiro Chuma; Mito Kanatsu-Shinohara; Kimiko Inoue; Narumi Ogonuki; Hiromi Miki; Shinya Toyokuni; Mihoko Hosokawa; Norio Nakatsuji; Atsuo Ogura; Takashi Shinohara

Primordial germ cells (PGCs) are derived from a population of pluripotent epiblast cells in mice. However, little is known about when and how PGCs acquire the capacity to differentiate into functional germ cells, while keeping the potential to derive pluripotent embryonic germ cells and teratocarcinomas. In this investigation, we show that epiblast cells and PGCs can establish colonies of spermatogenesis after transfer into postnatal seminiferous tubules of surrogate infertile mice. Furthermore, we obtained normal fertile offspring by microinsemination using spermatozoa or spermatids derived from PGCs harvested from fetuses as early as 8.5 days post coitum. Thus, fetal male germ cell development is remarkably flexible, and the maturation process, from epiblast cells through PGCs to postnatal spermatogonia, can occur in the postnatal testicular environment. Primordial germ cell transplantation techniques will also provide a novel tool to assess the developmental potential of PGCs, such as those manipulated in vitro or recovered from embryos harboring lethal mutations.

Collaboration


Dive into the Hiromi Miki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Narumi Ogonuki

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fumitoshi Ishino

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takashi Kohda

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Keiji Mochida

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge