Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takashi Kohda is active.

Publication


Featured researches published by Takashi Kohda.


Nature Genetics | 2006

Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality

Ryuichi Ono; Kenji Nakamura; Kimiko Inoue; Mie Naruse; Takako Usami; Noriko Wakisaka-Saito; Toshiaki Hino; Rika Suzuki-Migishima; Narumi Ogonuki; Hiromi Miki; Takashi Kohda; Atsuo Ogura; Minesuke Yokoyama; Tomoko Kaneko-Ishino; Fumitoshi Ishino

By comparing mammalian genomes, we and others have identified actively transcribed Ty3/gypsy retrotransposon-derived genes with highly conserved DNA sequences and insertion sites. To elucidate the functions of evolutionarily conserved retrotransposon-derived genes in mammalian development, we produced mice that lack one of these genes, Peg10 (paternally expressed 10), which is a paternally expressed imprinted gene on mouse proximal chromosome 6. The Peg10 knockout mice showed early embryonic lethality owing to defects in the placenta. This indicates that Peg10 is critical for mouse parthenogenetic development and provides the first direct evidence of an essential role of an evolutionarily conserved retrotransposon-derived gene in mammalian development.


Nature Genetics | 1995

Peg1/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization

Tomoko Kaneko-Ishino; Yoshimi Kuroiwa; Naoki Miyoshi; Takashi Kohda; Rika Suzuki; Minesuke Yokoyama; Stéphane Viville; Sheila C. Barton; Fumitoshi Ishino; Surani Ma

Parthenogenesis in the mouse is embryonic lethal partly because of imprinted genes that are expressed only from the paternal genome. In a systematic screen using subtraction hybridization between cDNAs from normal and parthenogenetic embryos, we initially identified two apparently novel imprinted genes, Peg1 and Peg3. Peg1 (paternally expressed gene 1) or Mest, the first imprinted gene found on the mouse chromosome 6, may contribute to the lethality of parthenogenones and of embryos with a maternal duplication for the proximal chromosome 6. Peg1/Mest is widely expressed in mesodermal tissues and belongs to the alpha/beta hydrolase fold family. A similar approach with androgenones can be used to identify imprinted genes that are expressed from the maternal genome only.


Genes to Cells | 2000

Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q.

Naoki Miyoshi; Hirotaka Wagatsuma; Shigeharu Wakana; Toshihiko Shiroishi; Masashi Nomura; Kohzoh Aisaka; Takashi Kohda; M. Azim Surani; Tomoko Kaneko-Ishino; Fumitoshi Ishino

The paternal duplication of mouse distal chromosome 12 leads to late embryonal/neonatal lethality and growth promotion, whereas maternal duplication leads to late embryonal lethality and growth retardation. Human paternal or maternal uniparental disomies of chromosome 14q that are syntenic to mouse distal chromosome 12 have also been reported to show some imprinting effects on growth, mental activity and musculoskeletal morphology. For the isolation of imprinted genes in this region, a systematic screen of maternally expressed genes (Megs) was carried out by our subtraction‐hybridization method using androgenetic and normally fertilized embryos.


Nature Genetics | 2008

Role of retrotransposon-derived imprinted gene, Rtl1 , in the feto-maternal interface of mouse placenta

Yoichi Sekita; Hirotaka Wagatsuma; Kenji Nakamura; Ryuichi Ono; Masayo Kagami; Noriko Wakisaka; Toshiaki Hino; Rika Suzuki-Migishima; Takashi Kohda; Atsuo Ogura; Tsutomu Ogata; Minesuke Yokoyama; Tomoko Kaneko-Ishino; Fumitoshi Ishino

Eutherian placenta, an organ that emerged in the course of mammalian evolution, provides essential architecture, the so-called feto-maternal interface, for fetal development by exchanging nutrition, gas and waste between fetal and maternal blood. Functional defects of the placenta cause several developmental disorders, such as intrauterine growth retardation in humans and mice. A series of new inventions and/or adaptations must have been necessary to form and maintain eutherian chorioallantoic placenta, which consists of capillary endothelial cells and a surrounding trophoblast cell layer(s). Although many placental genes have been identified, it remains unknown how the feto-maternal interface is formed and maintained during development, and how this novel design evolved. Here we demonstrate that retrotransposon-derived Rtl1 (retrotransposon-like 1), also known as Peg11 (paternally expressed 11), is essential for maintenance of the fetal capillaries, and that both its loss and its overproduction cause late-fetal and/or neonatal lethality in mice.


PLOS Genetics | 2007

Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting

Shunsuke Suzuki; Ryuichi Ono; Takanori Narita; Andrew J. Pask; Geoffrey Shaw; Changshan Wang; Takashi Kohda; Amber E. Alsop; Jennifer A. Marshall Graves; Yuji Kohara; Fumitoshi Ishino; Marilyn B. Renfree; Tomoko Kaneko-Ishino

Among mammals, only eutherians and marsupials are viviparous and have genomic imprinting that leads to parent-of-origin-specific differential gene expression. We used comparative analysis to investigate the origin of genomic imprinting in mammals. PEG10 (paternally expressed 10) is a retrotransposon-derived imprinted gene that has an essential role for the formation of the placenta of the mouse. Here, we show that an orthologue of PEG10 exists in another therian mammal, the marsupial tammar wallaby (Macropus eugenii), but not in a prototherian mammal, the egg-laying platypus (Ornithorhynchus anatinus), suggesting its close relationship to the origin of placentation in therian mammals. We have discovered a hitherto missing link of the imprinting mechanism between eutherians and marsupials because tammar PEG10 is the first example of a differentially methylated region (DMR) associated with genomic imprinting in marsupials. Surprisingly, the marsupial DMR was strictly limited to the 5′ region of PEG10, unlike the eutherian DMR, which covers the promoter regions of both PEG10 and the adjacent imprinted gene SGCE. These results not only demonstrate a common origin of the DMR-associated imprinting mechanism in therian mammals but provide the first demonstration that DMR-associated genomic imprinting in eutherians can originate from the repression of exogenous DNA sequences and/or retrotransposons by DNA methylation.


Science | 2010

Impeding Xist Expression from the Active X Chromosome Improves Mouse Somatic Cell Nuclear Transfer

Kimiko Inoue; Takashi Kohda; Michihiko Sugimoto; Takashi Sado; Narumi Ogonuki; Shogo Matoba; Hirosuke Shiura; Rieko Ikeda; Keiji Mochida; Takashi Fujii; Ken Sawai; Arie P. Otte; X.C. Tian; Xiangzhong Yang; Fumitoshi Ishino; Kuniya Abe; Atsuo Ogura

Cloning Futures Cloning mammals by somatic cell nuclear transfer is a technique with many potential applications in regenerative medicine, agriculture, and pharmaceutics; however, it is inefficient because of the incidence of aberrant genomic reprogramming. Inoue et al. (p. 496, published online 16 September) found that the gene product of Xist, which normally inactivates one of the two X chromosomes in females, was unexpectedly expressed ectopically from active X chromosomes in cloned mice. When Xist was deleted from the mice, gene expression returned to normal and the efficiency of somatic cell nuclear transfer increased about ninefold, offering promise for future nuclear transfer technology. Efficiency of mouse nuclear transfer was improved by correcting aberrant gene expression on the active X chromosome. Cloning mammals by means of somatic cell nuclear transfer (SCNT) is highly inefficient because of erroneous reprogramming of the donor genome. Reprogramming errors appear to arise randomly, but the nature of nonrandom, SCNT-specific errors remains elusive. We found that Xist, a noncoding RNA that inactivates one of the two X chromosomes in females, was ectopically expressed from the active X (Xa) chromosome in cloned mouse embryos of both sexes. Deletion of Xist on Xa showed normal global gene expression and resulted in about an eight- to ninefold increase in cloning efficiency. We also identified an Xist-independent mechanism that specifically down-regulated a subset of X-linked genes through somatic-type repressive histone blocks. Thus, we have identified nonrandom reprogramming errors in mouse cloning that can be altered to improve the efficiency of SCNT methods.


Biology of Reproduction | 2003

Effects of Donor Cell Type and Genotype on the Efficiency of Mouse Somatic Cell Cloning

Kimiko Inoue; Narumi Ogonuki; Keiji Mochida; Yoshie Yamamoto; Kaoru Takano; Takashi Kohda; Fumitoshi Ishino; Atsuo Ogura

Abstract Although it is widely assumed that the cell type and genotype of the donor cell affect the efficiency of somatic cell cloning, little systematic analysis has been done to verify this assumption. The present study was undertaken to examine whether donor cell type, donor genotype, or a combination thereof increased the efficiency of mouse cloning. Initially we assessed the developmental ability of embryos that were cloned from cumulus or immature Sertoli cells with six different genotypes (i.e., 2 × 6 factorial). Significantly better cleavage rates were obtained with cumulus cells than with Sertoli cells (P < 0.005, two-way ANOVA), which probably was due to the superior cell-cycle synchrony of cumulus cells at G0/G1. After embryo transfer, there was a significant effect of cell type on the birth rate, with Sertoli cells giving the better result (P < 0.005). Furthermore, there was a significant interaction (P < 0.05) between the cell type and genotype, which indicates that cloning efficiency is determined by a combination of these two factors. The highest mean birth rate (10.8 ± 2.1%) was obtained with (B6 × 129)F1 Sertoli cells. In the second series of experiments, we examined whether the developmental ability of clones with the wild-type genotype (JF1) was improved when combined with the 129 genotype. Normal pups were cloned from cumulus and immature Sertoli cells of the (129 × JF1)F1 and (JF1 × 129)F1 genotypes, whereas no pups were born from cells with the (B6 × JF1)F1 genotype. The present study clearly demonstrates that the efficiency of somatic cell cloning, and in particular fetal survival after embryo transfer, may be improved significantly by choosing the appropriate combinations of cell type and genotype.


Cloning and Stem Cells | 2002

Phenotypic effects of somatic cell cloning in the mouse.

Atsuo Ogura; Kimiko Inoue; Narumi Ogonuki; Ji-Young Lee; Takashi Kohda; Fumitoshi Ishino

Although a variety of phenotypes and epigenetic alterations have been reported in animals cloned from somatic cells, the exact nature and consequences of cloning remain unclear. We cloned mice using fresh or short-term cultures of donor cells (cumulus cells, immature Sertoli cells, and fetal or adult fibroblast cells) with defined genetic backgrounds, and then compared the phenotypic and epigenetic characteristics of the cloned mice with those of fertilization-derived control mice. Irrespective of the nucleus-donor cell type, about 50% of the reconstructed embryos developed to the morula/blastocyst stage, but about 90% of these clones showed arrested development between days 5 and 8, shortly after implantation. Most of the clones were alive at term, readily recovered respiration, and did not show any malformations or overgrowths. However, their placentas were two- to threefold larger than those of the controls, due to hyperplasia of the basal (or spongiotrophoblast) layer. Although there was significant suppression of a subset of both imprinted and non-imprinted placental genes, fetal gene suppression was minimal. The seven imprinted genes that we examined were all expressed correctly from the parental alleles. These findings were consistent for every cell type from the midgestation through term stages. Therefore, cloning by nuclear transfer does not perturb the parent-specific imprinting memory that is established during gametogenesis, and the phenotypic and epigenetic effects of cloning are restricted to placental development at the midgestation and term stages. Twelve male mice that were born in a normal manner following nuclear transfer with immature Sertoli cells (B6D2F1 genetic background) were subjected to long-term observation. They died earlier than the genotype-matched controls (50% survival point: 550 days vs. 1028 days, respectively), most probably due to severe pneumonia, which indicates that unexpected phenotypes can appear as a result of the long-term effects of somatic cell cloning.


Mechanisms of Development | 2005

Genomic imprinting of IGF2, p57KIP2 and PEG1/MEST in a marsupial, the tammar wallaby

Shunsuke Suzuki; Marilyn B. Renfree; Andrew J. Pask; Geoffrey Shaw; Shin Kobayashi; Takashi Kohda; Tomoko Kaneko-Ishino; Fumitoshi Ishino

Genomic imprinting is widespread amongst mammals, but has not yet been found in birds. To gain a broader understanding of the origin and significance of imprinting, we have characterized three genes, from three separate imprinted clusters in eutherian mammals in the developing fetus and placenta of an Australian marsupial, the tammar wallaby Macropus eugenii. Imprinted gene orthologues of human and mouse p57(KIP2), IGF2 and PEG1/MEST genes were isolated. p57(KIP2) did not show stable monoallelic expression suggesting that it is not imprinted in marsupials. In contrast, there was paternal-specific expression of IGF2 in almost all tissues, but the biased paternal expression of IGF2 in the fetal head and placenta, demonstrates the occurrence of tissue-specific imprinting, as occurs in mice and humans. There was also paternal-biased expression of PEG1/MESTalpha. The differentially methylated region (DMR) of the human and mouse PEG1/MEST promoter is absent in the wallaby. These data confirm the existence of common imprinted regions in eutherians and marsupials during development, but suggest that the regulatory mechanisms that control imprinted gene expression differ between these two groups of mammals.


Genes to Cells | 2000

Mouse Peg9/Dlk1 and human PEG9/DLK1 are paternally expressed imprinted genes closely located to the maternally expressed imprinted genes: mouse Meg3/Gtl2 and human MEG3

Shin Kobayashi; Hirotaka Wagatsuma; Ryuichi Ono; Hitoshi Ichikawa; Masaaki Yamazaki; Hiroyuki Tashiro; Kohzo Aisaka; Naoki Miyoshi; Takashi Kohda; Atsuo Ogura; Misao Ohki; Tomoko Kaneko-Ishino; Fumitoshi Ishino

Genomic imprinting significantly influences development, growth and behaviour in mammals. Systematic screening of imprinted genes has been extensively carried out to identify the genes responsible for imprinted phenotypes and to elucidate the biological significance of this phenomenon. In this study, we applied DNA chip technology for isolating paternally expressed imprinted genes (Pegs). We compared the resulting expression profiles of parthenogenetic and fertilized control embryos to identify novel imprinted genes.

Collaboration


Dive into the Takashi Kohda's collaboration.

Top Co-Authors

Avatar

Fumitoshi Ishino

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shin Kobayashi

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Narumi Ogonuki

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naoki Miyoshi

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ryuichi Ono

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge