Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiromitsu Hara is active.

Publication


Featured researches published by Hiromitsu Hara.


Nature Immunology | 2008

Mincle is an ITAM-coupled activating receptor that senses damaged cells.

Sho Yamasaki; Eri Ishikawa; Machie Sakuma; Hiromitsu Hara; Koji Ogata; Takashi Saito

Macrophage-inducible C-type lectin (Mincle) is expressed mainly in macrophages and is induced after exposure to various stimuli and stresses. Here we show that Mincle selectively associated with the Fc receptor common γ-chain and activated macrophages to produce inflammatory cytokines and chemokines. Mincle-expressing cells were activated in the presence of dead cells, and we identified SAP130, a component of small nuclear ribonucloprotein, as a Mincle ligand that is released from dead cells. To investigate whether Mincle is required for normal responses to cell death in vivo, we induced thymocyte death by irradiating mice and found that transient infiltration of neutrophils into the thymus could be blocked by injection of Mincle-specific antibody. Our results suggest that Mincle is a receptor that senses nonhomeostatic cell death and thereby induces the production of inflammatory cytokines to drive the infiltration of neutrophils into damaged tissue.


Journal of Immunology | 2007

Resident Vδ1+ γδ T Cells Control Early Infiltration of Neutrophils after Escherichia coli Infection via IL-17 Production

Kensuke Shibata; Hisakata Yamada; Hiromitsu Hara; Kenji Kishihara; Yasunobu Yoshikai

Neutrophils infiltrate the site of infection and play critical roles in host defense, especially against extracellular bacteria. In the present study, we found a rapid and transient production of IL-17 after i.p. infection with Escherichia coli, preceding the influx of neutrophils. Neutralization of IL-17 resulted in a reduced infiltration of neutrophils and an impaired bacterial clearance. Ex vivo intracellular cytokine flow cytometric analysis revealed that γδ T cell population was the major source of IL-17. Mice depleted of γδ T cells by mAb treatment or mice genetically lacking Vδ1 showed diminished IL-17 production and reduced neutrophil infiltration after E. coli infection, indicating an importance of Vδ1+ γδ T cells as the source of IL-17. It was further revealed that γδ T cells in the peritoneal cavity of naive mice produced IL-17 in response to IL-23, which was induced rapidly after E. coli infection in a TLR4 signaling-dependent manner. Thus, although γδ T cells are generally regarded as a part of early induced immune responses, which bridge innate and adaptive immune responses, our study demonstrated a novel role of γδ T cells as a first line of host defense controlling neutrophil-mediated innate immune responses.


Immunity | 2003

The MAGUK family protein CARD11 is essential for lymphocyte activation.

Hiromitsu Hara; Teiji Wada; Chris Bakal; Ivona Kozieradzki; Shinobu Suzuki; Nobutaka Suzuki; Mai Nghiem; Emily K Griffiths; Connie M. Krawczyk; Birgit Bauer; Fulvio D'Acquisto; Sankar Ghosh; Wen-Chen Yeh; Gottfried Baier; Robert Rottapel; Josef M. Penninger

Members of the MAGUK family proteins cluster receptors and intracellular signaling molecules at the neuronal synapse. We report that genetic inactivation of the MAGUK family protein CARD11/Carma1/Bimp3 results in a complete block in T and B cell immunity. CARD11 is essential for antigen receptor- and PKC-mediated proliferation and cytokine production in T and B cells due to a selective defect in JNK and NFkappaB activation. Moreover, B cell proliferation and JNK activation were impaired upon stimulation of TLR4 with lipopolysaccharide, indicating that CARD11 is involved in both the innate and adaptive immune systems. Our results show that the same family of molecules are critical regulators of neuronal synapses and immune receptor signaling.


Immunity | 2003

Identifying the MAGUK Protein Carma-1 as a Central Regulator of Humoral Immune Responses and Atopy by Genome-Wide Mouse Mutagenesis

Jesse E. Jun; Lauren Elizabeth Wilson; Carola G. Vinuesa; Sylvie Lesage; Mathieu Bléry; Lisa A. Miosge; Matthew C. Cook; Edyta M. Kucharska; Hiromitsu Hara; Josef M. Penninger; Heather Domashenz; Nancy A. Hong; Richard Glynne; Keats A. Nelms; Christopher C. Goodnow

In a genome-wide ENU mouse mutagenesis screen a recessive mouse mutation, unmodulated, was isolated with profound defects in humoral immune responses, selective deficits in B cell activation by antigen receptors and T cell costimulation by CD28, and gradual development of atopic dermatitis with hyper-IgE. Mutant B cells are specifically defective in forming connections between antigen receptors and two key signaling pathways for immunogenic responses, NF-kappaB and JNK, but signal normally to calcium, NFAT, and ERK. The mutation alters a conserved leucine in the coiled-coil domain of CARMA-1/CARD11, a member of the MAGUK protein family implicated in organizing multimolecular signaling complexes. These results define Carma-1 as a key regulator of the plasticity in antigen receptor signaling that underpins opposing mechanisms of immunity and tolerance.


Journal of Immunology | 2010

Essential Role of IL-17A in the Formation of a Mycobacterial Infection-Induced Granuloma in the Lung

Yuko Okamoto Yoshida; Masayuki Umemura; Ayano Yahagi; Rebecca L. O’Brien; Koichi Ikuta; Kenji Kishihara; Hiromitsu Hara; Susumu Nakae; Yoichiro Iwakura; Goro Matsuzaki

Granulomas play an essential role in the sequestration and killing of mycobacteria in the lung; however, the mechanisms of their development and maturation are still not clearly understood. IL-17A is involved in mature granuloma formation in the mycobacteria-infected lung. Therefore, IL-17A gene-knockout (KO) mice fail to develop mature granulomas in the Mycobacterium bovis bacille Calmette-Guérin (BCG)-infected lung. This study analyzed the mechanism of IL-17A–dependent mature granuloma formation in the mycobacteria-infected lung. The IL-17A KO mice showed a normal level of nascent granuloma formation on day 14 but failed to develop mature granulomas on day 28 after the BCG infection in the lung. The observation implies that IL-17A is required for the maturation of granuloma from the nascent to mature stage. TCR γδ T cells expressing TCR Vγ4 or Vγ6 were identified as the major IL-17A–producing cells that resided in the BCG-induced lung granuloma. The adoptive transfer of the IL-17A–producing TCR γδ T cells reconstituted granuloma formation in the IL-17A KO mice. The expression of ICAM-1 and LFA-1, which are adhesion molecules important in granuloma formation, decreased in the lung of the BCG-infected IL-17A KO mice, and their expression was induced on BCG-infected macrophages in coculture with IL-17A–producing TCR γδ T cells. Furthermore, IL-17A KO mice showed not only an impaired mature granuloma formation, but also an impaired protective response to virulent Mycobacterium tuberculosis. Therefore, IL-17A produced by TCR γδ T cells plays a critical role in the prevention of M. tuberculosis infection through the induction of mature granuloma formation.


Circulation Research | 2007

Impaired Heart Contractility in Apelin Gene–Deficient Mice Associated With Aging and Pressure Overload

Keiji Kuba; Liyong Zhang; Yumiko Imai; Sara Arab; Manyin Chen; Yuichiro Maekawa; Michael Leschnik; Mato Markovic; Julia Schwaighofer; Nadine Beetz; Renata Musialek; G. Greg Neely; Vukoslav Komnenovic; Ursula Kolm; Bernhard Metzler; Romeo Ricci; Hiromitsu Hara; Arabella Meixner; Mai Nghiem; Xin Chen; Fayez Dawood; Kit Man Wong; Eva Cukerman; Akinori Kimura; Lutz Hein; Johann Thalhammer; Peter Liu; Josef M. Penninger

Apelin constitutes a novel endogenous peptide system suggested to be involved in a broad range of physiological functions, including cardiovascular function, heart development, control of fluid homeostasis, and obesity. Apelin is also a catalytic substrate for angiotensin-converting enzyme 2, the key severe acute respiratory syndrome receptor. The in vivo physiological role of Apelin is still elusive. Here we report the generation of Apelin gene–targeted mice. Apelin mutant mice are viable and fertile, appear healthy, and exhibit normal body weight, water and food intake, heart rates, and heart morphology. Intriguingly, aged Apelin knockout mice developed progressive impairment of cardiac contractility associated with systolic dysfunction in the absence of histological abnormalities. We also report that pressure overload induces upregulation of Apelin expression in the heart. Importantly, in pressure overload–induced heart failure, loss of Apelin did not significantly affect the hypertrophy response, but Apelin mutant mice developed progressive heart failure. Global gene expression arrays and hierarchical clustering of differentially expressed genes in hearts of banded Apelin−/y and Apelin+/y mice showed concerted upregulation of genes involved in extracellular matrix remodeling and muscle contraction. These genetic data show that the endogenous peptide Apelin is crucial to maintain cardiac contractility in pressure overload and aging.


PLOS Pathogens | 2012

Probiotic Bifidobacterium breve Induces IL-10-Producing Tr1 Cells in the Colon

Seong Gyu Jeon; Hisako Kayama; Yoshiyasu Ueda; Takuya Takahashi; Takashi Asahara; Hirokazu Tsuji; Noriko M. Tsuji; Hiroshi Kiyono; Ji Su Ma; Takashi Kusu; Ryu Okumura; Hiromitsu Hara; Hiroki Yoshida; Masahiro Yamamoto; Koji Nomoto; Kiyoshi Takeda

Specific intestinal microbiota has been shown to induce Foxp3+ regulatory T cell development. However, it remains unclear how development of another regulatory T cell subset, Tr1 cells, is regulated in the intestine. Here, we analyzed the role of two probiotic strains of intestinal bacteria, Lactobacillus casei and Bifidobacterium breve in T cell development in the intestine. B. breve, but not L. casei, induced development of IL-10-producing Tr1 cells that express cMaf, IL-21, and Ahr in the large intestine. Intestinal CD103+ dendritic cells (DCs) mediated B. breve-induced development of IL-10-producing T cells. CD103+ DCs from Il10 −/−, Tlr2 −/−, and Myd88 −/− mice showed defective B. breve-induced Tr1 cell development. B. breve-treated CD103+ DCs failed to induce IL-10 production from co-cultured Il27ra −/− T cells. B. breve treatment of Tlr2 −/− mice did not increase IL-10-producing T cells in the colonic lamina propria. Thus, B. breve activates intestinal CD103+ DCs to produce IL-10 and IL-27 via the TLR2/MyD88 pathway thereby inducing IL-10-producing Tr1 cells in the large intestine. Oral B. breve administration ameliorated colitis in immunocompromised mice given naïve CD4+ T cells from wild-type mice, but not Il10 −/− mice. These findings demonstrate that B. breve prevents intestinal inflammation through the induction of intestinal IL-10-producing Tr1 cells.


Nature Medicine | 2005

The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis.

Teiji Wada; Tomoki Nakashima; Antonio J. Oliveira-dos-Santos; Juerg A. Gasser; Hiromitsu Hara; Georg Schett; Josef M. Penninger

Morphogenesis and remodeling of bone involve synthesis of bone matrix by osteoblasts and coordinate resorption of bone by osteoclasts. Defective bone remodeling caused by altered osteoclast activity underlies a multitude of osteopenic disorders. Receptor activator of NF-κB (RANK) and its ligand RANKL have been identified as essential factors involved in osteoclast development and bone remodeling, but their mechanism and interacting factors have not been fully characterized. Here we report that the molecular adapter Grb-2-associated binder-2 (Gab2) associates with RANK and mediates RANK-induced activation of NF-κB, Akt and Jnk. Inactivation of the gene encoding Gab2 in mice results in osteopetrosis and decreased bone resorption as a result of defective osteoclast differentiation. We also show that Gab2 has a crucial role in the differentiation of human progenitor cells into osteoclasts. We have thus identified a new, key regulatory scaffold molecule, Gab2, that controls select RANK signaling pathways and is essential for osteoclastogenesis and bone homeostasis.


Journal of Immunology | 2007

Cutting Edge: TLR2 Directly Triggers Th1 Effector Functions

Takayuki Imanishi; Hiromitsu Hara; Shinobu Suzuki; Nobutaka Suzuki; Shizuo Akira; Takashi Saito

Toll-like receptors recognize pathogen-associated molecular patterns, activate innate immunity, and consequently modulate adaptive immunity in response to infections. TLRs are also expressed on T cells, and it has been shown that T cell activation is modulated by TLR ligands. However, the functions of TLRs on Th1 and Th2 effector cells and the molecular mechanisms underlying TLR-mediated activation are not fully understood. We analyzed TLR functions and downstream signaling events in both effector T cells. In mouse Th1 cells the stimulation by TLR2 but not by other TLRs directly induced IFN-γ production, cell proliferation, and cell survival without TCR stimulation, and these effects were greatly enhanced by IL-2 or IL-12 through the enhanced activation of MAPKs. In contrast, no TLR affected the function of effector Th2 cells. These results identify TLR2 as a new specific activator of Th1 cell function and imply the involvement in Th1-mediated responses.


The EMBO Journal | 2007

Phosphorylation and ubiquitination of the IκB kinase complex by two distinct signaling pathways

Prashant B. Shambharkar; Marzenna Blonska; Bhanu P. Pappu; Hongxiu Li; Yun You; Hiroaki Sakurai; Bryant G. Darnay; Hiromitsu Hara; Josef M. Penninger; Xin Lin

The IκB kinase (IKK) complex serves as the master regulator for the activation of NF‐κB by various stimuli. It contains two catalytic subunits, IKKα and IKKβ, and a regulatory subunit, IKKγ/NEMO. The activation of IKK complex is dependent on the phosphorylation of IKKα/β at its activation loop and the K63‐linked ubiquitination of NEMO. However, the molecular mechanism by which these inducible modifications occur remains undefined. Here, we demonstrate that CARMA1, a key scaffold molecule, is essential to regulate NEMO ubiquitination upon T‐cell receptor (TCR) stimulation. However, the phosphorylation of IKKα/β activation loop is independent of CARMA1 or NEMO ubiquitination. Further, we provide evidence that TAK1 is activated and recruited to the synapses in a CARMA1‐independent manner and mediate IKKα/β phosphorylation. Thus, our study provides the biochemical and genetic evidence that phosphorylation of IKKα/β and ubiquitination of NEMO are regulated by two distinct pathways upon TCR stimulation.

Collaboration


Dive into the Hiromitsu Hara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josef M. Penninger

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoichiro Iwakura

Tokyo University of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge