Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiromitsu Matsui is active.

Publication


Featured researches published by Hiromitsu Matsui.


Hypertension | 2007

Salt-Induced Nephropathy in Obese Spontaneously Hypertensive Rats Via Paradoxical Activation of the Mineralocorticoid Receptor: Role of Oxidative Stress

Miki Nagase; Hiromitsu Matsui; Shigeru Shibata; Takanari Gotoda; Toshiro Fujita

Aldosterone is implicated in the pathogenesis of proteinuria and chronic kidney disease. We previously demonstrated the contribution of elevated serum aldosterone in the early nephropathy of SHR/NDmcr-cp (SHR/cp), a rat model of metabolic syndrome. In the present study, we investigated the effect of salt loading on renal damage in SHR/cps and explored the underlying mechanisms. SHR/cps fed a high-sodium diet for 4 weeks developed severe hypertension, massive proteinuria, and advanced renal lesions. High salt also worsened glomerular podocyte impairment. Surprisingly, selective mineralocorticoid receptor (MR) antagonist eplerenone dramatically ameliorated the salt-induced proteinuria and renal injury in SHR/cps. Although salt loading reduced circulating aldosterone, it increased nuclear MR and expression of aldosterone effector kinase Sgk1 in the kidney. Gene expressions of transforming growth factor-&bgr;1 and plasminogen activator inhibitor-1 were also enhanced in the kidneys of salt-loaded SHR/cps, and eplerenone completely inhibited these injury markers. To clarify the discrepancy between decreased aldosterone and enhanced MR signaling by salt, we further investigated the role of oxidative stress, a putative key factor mediating salt-induced tissue damage. Interestingly, antioxidant Tempol attenuated the salt-evoked MR upregulation and Sgk1 induction and alleviated proteinuria and renal histological abnormalities, suggesting the involvement of oxidative stress in salt-induced MR activation. MR activation by salt was not attributed to increased serum corticosterone or reduced 11&bgr;-hydroxysteroid dehydrogenase type 2 activity. In conclusion, sodium loading exacerbated proteinuria and renal injury in metabolic syndrome rats. Salt reduced circulating aldosterone but caused renal MR activation at least partially via induction of oxidative stress, and eplerenone effectively improved the nephropathy.


Circulation | 2009

Sympathoexcitation by Oxidative Stress in the Brain Mediates Arterial Pressure Elevation in Obesity-Induced Hypertension

Ai Nagae; Megumi Fujita; Hiroo Kawarazaki; Hiromitsu Matsui; Katsuyuki Ando; Toshiro Fujita

Background— Obesity is one of the major risk factors for cardiovascular disease and is often associated with increased oxidative stress and sympathoexcitation. We have already suggested that increased oxidative stress in the brain modulates the sympathetic regulation of arterial pressure in salt-sensitive hypertension, which is often associated with obesity. The present study was performed to determine whether oxidative stress could mediate central sympathoexcitation in the initial stage of obesity-induced hypertension. Methods and Results— Four-week-old male Sprague-Dawley rats were fed a high-fat (45% kcal as fat) or low-fat (10% kcal as fat) diet for 6 weeks. Fat loading elicited hypertension and sympathoexcitation, along with visceral obesity. In urethane-anesthetized and artificially ventilated rats, arterial pressure and renal sympathetic nerve activity decreased in a dose-dependent fashion when 53 or 105 &mgr;mol/kg tempol, a membrane-permeable superoxide dismutase mimetic, was infused into the lateral cerebral ventricle. Central tempol reduced arterial pressure and renal sympathetic nerve activity to a significantly greater extent in high-fat diet–fed hypertensive rats than in low-fat diet–fed normotensive rats. Intracerebroventricular apocynin or diphenyleneiodonium, a reduced NADPH oxidase inhibitor, also elicited markedly greater reductions in arterial pressure and renal sympathetic nerve activity in the high-fat diet–fed rats. In addition, fat loading increased NADPH oxidase activity and NADPH oxidase subunit p22phox, p47phox, and gp91phox mRNA expression in the hypothalamus. Conclusions— In obesity-induced hypertension, increased oxidative stress in the brain, possibly via activation of NADPH oxidase, may contribute to the progression of hypertension through central sympathoexcitation.


Hypertension | 2003

Deficiency of Adrenomedullin Induces Insulin Resistance by Increasing Oxidative Stress

Tatsuo Shimosawa; Takehide Ogihara; Hiromitsu Matsui; Tomoichiro Asano; Katsuyuki Ando; Toshiro Fujita

Abstract—Hypertension, insulin resistance, and obesity are common age-related metabolic disorders that are often associated with increased oxidative stress and the resultant vascular damage. Underlying mechanisms have been suggested, and age-related overproduction of oxidative stress is one possible candidate. Since we recently found a vasoactive peptide, adrenomedullin, to be an endogenous antioxidant that potently inhibits oxidative stress–induced vascular damage, in the current study we evaluated oxidative stress–induced changes in aged mice. Insulin sensitivities in young and aged adrenomedullin-deficient mice were measured by means of the hyperinsulinemic-euglycemic clamp method; insulin resistance was apparent in aged adrenomedullin-deficient mice with increased urinary excretion of 8-iso-prostaglandin F2&agr;, a marker of oxidative stress, but not in young adrenomedullin-deficient mice. Concomitantly, only aged adrenomedullin-deficient mice not only showed increased production of muscular reactive oxygen species, as demonstrated by the electron spin resonance method, but also had significantly decreased insulin-stimulated glucose uptake into the soleus muscle associated with impairment of insulin signals such as insulin receptor substrate-1,2 and phosphatidylinositol-3 kinase activities. In turn, these abnormalities could be nearly reversed by either treatment with 4-hydroxy-2,2,6,6-tetramethyl-piperidine-N-oxyl, a membrane-permeable superoxide dismutase mimetic, or adrenomedullin supplementation. Evidence presented in this report suggests that age-related accumulation of oxidative stress is involved in blood pressure regulation and insulin resistance in aged adrenomedullin-deficient mice, and adrenomedullin is thus an endogenous substance counteracting oxidative stress–induced insulin resistance associated with aging.


Circulation | 2004

Adrenomedullin Can Protect Against Pulmonary Vascular Remodeling Induced by Hypoxia

Hiromitsu Matsui; Tatsuo Shimosawa; Kanami Itakura; Xing Guanqun; Katsuyuki Ando; Toshiro Fujita

Background—Chronic hypoxia is one of the major causes of pulmonary vascular remodeling associated with stimulating reactive oxygen species (ROS) production. Recent studies have indicated that hypoxia upregulates expression of adrenomedullin (AM), which is not only a potent vasodilator but also an antioxidant. Thus, using heterozygous AM-knockout (AM+/+) mice, we examined whether AM could attenuate pulmonary vascular damage induced by hypoxia. Methods and Results—Ten-week-old male wild-type (AM+/+) or AM+/− mice were housed under 10% oxygen conditions for 3 to 21 days. In AM+/+ mice, hypoxia enhanced AM mRNA expression, which was reduced by the administration of a superoxide dismutase mimetic, 4-hydroxy-2,2,6,6-tetramethyl-piperidine-N-oxyl (hydroxy-TEMPO). Hypoxia induced pulmonary vascular remodeling, which was associated with the increased production of oxidative stress measured by electron spin resonance and immunostaining of 3-nitrotyrosine. The media wall thickness of the pulmonary arteries was significantly greater in AM+/− mice housed under hypoxia than in AM+/+ mice under hypoxia. Concomitantly, pulmonary ROS production induced by hypoxia was more enhanced in AM+/− mice than in AM+/+ mice. The administration of both exogenous AM and hydroxy-TEMPO normalized pulmonary vascular media wall thickness in not only AM+/+ but also AM+/− mice under hypoxic conditions associated with the normalization of ROS overproduction in the lung. Conclusions—The present results suggest that an endogenous AM is a potential protective peptide against hypoxia-induced vascular remodeling, possibly through the suppression of ROS generation, which might provide an effective therapeutic strategy.


Hypertension | 2006

Protective Effect of Potassium Against the Hypertensive Cardiac Dysfunction: Association With Reactive Oxygen Species Reduction

Hiromitsu Matsui; Tatsuo Shimosawa; Yuzaburo Uetake; Hong Wang; Sayoko Ogura; Tomoyo Kaneko; Jing Liu; Katsuyuki Ando; Toshiro Fujita

Potassium supplementation has a potent protective effect against cardiovascular disease, but the precise mechanism of it against left ventricular abnormal relaxation, relatively early functional cardiac alteration in hypertensive subjects, has not been fully elucidated. In the present study, we investigated the effect of potassium against salt-induced cardiac dysfunction and the involved mechanism. Seven- to 8-week–old Dahl salt sensitive rats were fed normal diet (0.3% NaCl) or high-salt diet (8% NaCl) with or without high potassium (8% KCl) for 8 weeks. Left ventricular relaxation was evaluated by the deceleration time of early diastolic filling obtained from Doppler transmitral inflow, the slope of the pressure curve, and the time constant at the isovolumic relaxation phase. High-salt loading induced a significant elevation of blood pressure and impaired left ventricular relaxation, accompanied by augmentation of reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase activity in the cardiac tissue, measured by the lucigenin chemiluminescence method. Blood pressure lowering by hydralazine could not ameliorate NADPH oxidase activity and resulted in no improvement of left ventricular relaxation. Interestingly, although the blood pressure remained high, potassium supplementation as well as treatment with 4-hydroxy-2,2,6,6-tetramethyl-piperidine-N-oxyl, a superoxide dismutase mimetic, not only reduced the elevated NADPH oxidase activity but also improved the left ventricular relaxation. In conclusion, a high-potassium diet has a potent protective effect on left ventricular active relaxation independent of blood pressure, partly through the inhibition of cardiac NADPH oxidase activity. Sufficient potassium supplementation might be an attractive strategy for cardiac protection, especially in the salt-sensitive hypertensive subjects.


Hypertension | 2008

Salt Excess Causes Left Ventricular Diastolic Dysfunction in Rats With Metabolic Disorder

Hiromitsu Matsui; Katsuyuki Ando; Hiroo Kawarazaki; Ai Nagae; Megumi Fujita; Tatsuo Shimosawa; Miki Nagase; Toshiro Fujita

Metabolic syndrome is a highly predisposing condition for cardiovascular disease and could be a cause of excess salt–induced organ damage. Recently, several investigators have demonstrated that salt loading causes left ventricular diastolic dysfunction associated with increased oxidative stress and mineralocorticoid receptor activation. We, therefore, investigated whether excess salt induces cardiac diastolic dysfunction in metabolic syndrome via increased oxidative stress and upregulation of mineralocorticoid receptor signals. Thirteen-week-old spontaneously hypertensive rats and SHR/NDmcr-cps, the genetic model of metabolic syndrome, were fed a normal salt (0.5% NaCl) or high-salt (8% NaCl) diet for 4 weeks. In SHR/NDmcr-cps, salt loading induced severe hypertension, abnormal left ventricular relaxation, and perivascular fibrosis. Salt-loaded SHR/NDmcr-cps also exhibited overproduction of reactive oxygen species and upregulation of mineralocorticoid receptor–dependent gene expression, such as Na+/H+ exchanger-1 and serum- and glucocorticoid-inducible kinase-1 in the cardiac tissue. However, in spontaneously hypertensive rats, salt loading did not cause these cardiac abnormalities despite a similar increase in blood pressure. An antioxidant, tempol, prevented salt-induced diastolic dysfunction, perivascular fibrosis, and upregulation of mineralocorticoid receptor signals in SHR/NDmcr-cps. Moreover, a selective mineralocorticoid receptor antagonist, eplerenone, prevented not only diastolic dysfunction but also overproduction of reactive oxygen species in salt-loaded SHR/NDmcr-cps. These results suggest that metabolic syndrome is a predisposed condition for salt-induced left ventricular diastolic dysfunction, possibly via increased oxidative stress and enhanced mineralocorticoid receptor signals.


Journal of Hypertension | 2008

Paradoxical mineralocorticoid receptor activation and left ventricular diastolic dysfunction under high oxidative stress conditions.

Hong Wang; Tatsuo Shimosawa; Hiromitsu Matsui; Tomoyo Kaneko; Sayoko Ogura; Yuzaburo Uetake; Katsu Takenaka; Yutaka Yatomi; Toshiro Fujita

Background Salt status plays a pivotal role in angiotensin-II-induced organ damage by regulating reactive oxygen species status, and it is reported that reactive oxygen species activate mineralocorticoid receptors. Method To clarify the role of reactive oxygen species-related mineralocorticoid receptor activation in angiotensin-II-induced cardiac dysfunction, we examined the effect of the following: salt status; an MR antagonist, eplerenone; and an antioxidant, tempol in angiotensin-II-loaded Sprague–Dawley rats. Results Angiotensin-II/salt-loading elevated blood pressure, and neither eplerenone nor tempol antagonized the rise in blood pressure significantly. Left ventricular diastolic function was monitored by measuring peak velocity of a mitral early inflow (E), the ratio of mitral early inflow to atrial contraction related flow (E/A), deceleration time of mitral early inflow and −dP/dt, the time constant (T), and filling pressure (left ventricular end-diastolic pressure) by echocardiography or cardiac catheterization. Despite the suppressed serum aldosterone, left ventricular diastolic function was deteriorated with angiotensin II/high salt, but not affected by angiotensin II/low salt. However, angiotensin-II/salt-induced cardiac dysfunction was restored by eplerenone and tempol. Nicotinamide adenine dinucleotide phosphateoxidase-derived superoxide formation was greater in the hearts of the angiotensin II/high-salt rats than of the angiotensin II/low-salt rats. The expression of the Na+–H+ exchanger isoform 1, a target of mineralocorticoid receptor activation, was significantly increased in the angiotensin II/high-salt group. Both tempol and eplerenone inhibited the angiotensin-II/salt-induced upregulation of Na+–H+ exchanger isoform 1. Conclusion These findings demonstrate that mineralocorticoid receptor activation by oxidative stress can cause left ventricular diastolic dysfunction in a rat model of mild hypertension.


Current Vascular Pharmacology | 2010

Protective Effect of Dietary Potassium against Cardiovascular Damage in Salt-Sensitive Hypertension: Possible Role of its Antioxidant Action

Katsuyuki Ando; Hiromitsu Matsui; Megumi Fujita; Toshiro Fujita

It is well known that high salt intake induces hypertension and cardiovascular damage, while dietary potassium supplementation counteracts these harmful effects. Actually, the protective effect of potassium is strengthened with excess salt as compared with salt depletion. Although the precise mechanisms have not been fully elucidated, in our previous reports, the antihypertensive effect of dietary potassium was accompanied by sympathetic nerve inhibition in salt-sensitive hypertension. Also, potassium supplement suppressed salt-induced insulin resistance. These effects of dietary potassium can explain its cardio- and vasculo-protective action in addition to the potassium supplementation induced decreased salt-induced rise in blood pressure. On the other hand, salt-sensitive hypertension is associated with reactive oxygen species (ROS) overproduction. Moreover, sympathoexcitation can be induced by central ROS upregulation and insulin resistance can be caused by ROS excess in the target organs of insulin, such as skeletal muscle. Conversely, the seemingly different actions of potassium can be explained by the antioxidant effect of dietary potassium; in our recent studies, potassium supplementation inhibits salt-induced progress of cardiac diastolic dysfunction and vascular neointima formation by cuff placement around arteries, associated with the inhibition of regional ROS overproduction, in salt-sensitive hypertension. Thus, it is possible that dietary potassium protects against salt-induced cardiovascular damage by the reduction of ROS generation and by central sympatholytic action and amelioration of insulin resistance induced through its antioxidant effect.


American Journal of Physiology-renal Physiology | 2011

Mineralocorticoid receptor activation: a major contributor to salt-induced renal injury and hypertension in young rats

Hiroo Kawarazaki; Katsuyuki Ando; Megumi Fujita; Hiromitsu Matsui; Ai Nagae; Kazuhiko Muraoka; Chiaki Kawarasaki; Toshiro Fujita

Excessive salt intake is known to preferentially increase blood pressure (BP) and promote kidney damage in young, salt-sensitive hypertensive human and animal models. We have suggested that mineralocorticoid receptor (MR) activation plays a major role in kidney injury in young rats. BP and urinary protein were compared in young (3-wk-old) and adult (10-wk-old) uninephrectomized (UNx) Sprague-Dawley rats fed a high (8.0%)-salt diet for 4 wk. The effects of the MR blocker eplerenone on BP and renal injury were examined in the high-salt diet-fed young UNx rats. Renal expression of renin-angiotensin-aldosterone (RAA) system components and of inflammatory and oxidative stress markers was also measured. The effects of the angiotensin receptor blocker olmesartan with or without low-dose aldosterone infusion, the aldosterone synthase inhibitor FAD286, and the antioxidant tempol were also studied. Excessive salt intake induced greater hypertension and proteinuria in young rats than in adult rats. The kidneys of young salt-loaded rats showed marked histological injury, overexpression of RAA system components, and an increase in inflammatory and oxidative stress markers. These changes were markedly ameliorated by eplerenone treatment. Olmesartan also ameliorated salt-induced renal injury but failed to do so when combined with low-dose aldosterone infusion. FAD286 and tempol also markedly reduced urinary protein. UNx rats exposed to excessive salt at a young age showed severe hypertension and renal injury, likely primarily due to MR activation and secondarily due to angiotensin receptor activation, which may be mediated by inflammation and oxidative stress.


Lipids in Health and Disease | 2015

High-salt in addition to high-fat diet may enhance inflammation and fibrosis in liver steatosis induced by oxidative stress and dyslipidemia in mice

Yuzaburo Uetake; Hitoshi Ikeda; Rie Irie; Kazuaki Tejima; Hiromitsu Matsui; Sayoko Ogura; Hong Wang; Shengyu Mu; Daigoro Hirohama; Katsuyuki Ando; Tatsuya Sawamura; Yutaka Yatomi; Toshiro Fujita; Tatsuo Shimosawa

BackgroundIt is widely known that salt is an accelerating factor for the progression of metabolic syndrome and causes cardiovascular diseases, most likely due to its pro-oxidant properties. We hypothesized that excessive salt intake also facilitates the development of nonalcoholic steatohepatitis (NASH), which is frequently associated with metabolic syndrome.MethodsWe examined the exacerbating effect of high-salt diet on high-fat diet-induced liver injury in a susceptible model to oxidative stress, apoE knockout and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) transgenic mice.ResultsHigh-salt diet led to NASH in high-fat diet-fed LOX-1 transgenic/apoE knockout mice without affecting high-fat diet-induced dyslipidemia or hepatic triglyceride accumulation. Additionally, a high-salt and high-fat diet stimulated oxidative stress production and inflammatory reaction to a greater extent than did a high-fat diet in the liver of LOX-1 transgenic/apoE knockout mice.ConclusionsWe demonstrated that high-salt diet exacerbated NASH in high-fat diet-fed LOX-1 transgenic /apoE knockout mice and that this effect was associated with the stimulation of oxidative and inflammatory processes; this is the first study to suggest the important role of excessive salt intake in the development of NASH.

Collaboration


Dive into the Hiromitsu Matsui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge