Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sayoko Ogura is active.

Publication


Featured researches published by Sayoko Ogura.


Nature Medicine | 2011

Epigenetic modulation of the renal β-adrenergic–WNK4 pathway in salt-sensitive hypertension

Shengyu Mu; Tatsuo Shimosawa; Sayoko Ogura; Hong Wang; Yuzaburo Uetake; Fumiko Kawakami-Mori; Takeshi Marumo; Yutaka Yatomi; David S Geller; Hirotoshi Tanaka; Toshiro Fujita

How high salt intake increases blood pressure is a key question in the study of hypertension. Salt intake induces increased renal sympathetic activity resulting in sodium retention. However, the mechanisms underlying the sympathetic control of renal sodium excretion remain unclear. In this study, we found that β2-adrenergic receptor (β2AR) stimulation led to decreased transcription of the gene encoding WNK4, a regulator of sodium reabsorption. β2AR stimulation resulted in cyclic AMP-dependent inhibition of histone deacetylase-8 (HDAC8) activity and increased histone acetylation, leading to binding of the glucocorticoid receptor to a negative glucocorticoid−responsive element in the promoter region. In rat models of salt-sensitive hypertension and sympathetic overactivity, salt loading suppressed renal WNK4 expression, activated the Na+-Cl− cotransporter and induced salt-dependent hypertension. These findings implicate the epigenetic modulation of WNK4 transcription in the development of salt-sensitive hypertension. The renal β2AR-WNK4 pathway may be a therapeutic target for salt-sensitive hypertension.


Clinical Chemistry | 2010

LOX Index, a Novel Predictive Biochemical Marker for Coronary Heart Disease and Stroke

Nobutaka Inoue; Tomonori Okamura; Yoshihiro Kokubo; Yoshiko Fujita; Yuko Sato; Mamoru Nakanishi; Kazuki Yanagida; Akemi Kakino; Shin Iwamoto; Makoto Watanabe; Sayoko Ogura; Kazunori Otsui; Haruo Matsuda; Kagehiro Uchida; Ryo Yoshimoto; Tatsuya Sawamura

BACKGROUND Lectin-like oxidized LDL receptor 1 (LOX-1) is implicated in atherothrombotic diseases. Activation of LOX-1 in humans can be evaluated by use of the LOX index, obtained by multiplying the circulating concentration of LOX-1 ligands containing apolipoprotein B (LAB) times that of the soluble form of LOX-1 (sLOX-1) [LOX index = LAB x sLOX-1]. This study aimed to establish the prognostic value of the LOX index for coronary heart disease (CHD) and stroke in a community-based cohort. METHODS An 11-year cohort study of 2437 residents age 30-79 years was performed in an urban area located in Japan. Of these, we included in the analysis 1094 men and 1201 women without history of stroke and CHD. We measured LAB and sLOX-1 using ELISAs with recombinant LOX-1 and monoclonal anti-apolipoprotein B antibody and with 2 monoclonal antibodies against LOX-1, respectively. RESULTS During the follow-up period, there were 68 incident cases of CHD and 91 cases of stroke (with 60 ischemic strokes). Compared with the bottom quartile, the hazard ratio (HR) of the top quartile of LOX index was 1.74 (95% CI 0.92-3.30) for stroke and 2.09 (1.00-4.35) for CHD after adjusting for sex, age, body mass index, drinking, smoking, hypertension, diabetes, non-HDL cholesterol, and use of lipid-lowering agents. Compared with the bottom quartile of LOX index, the fully adjusted HRs for ischemic stroke were consistently high from the second to the top quartile: 3.39 (95% CI 1.34-8.53), 3.15 (1.22-8.13) and 3.23 (1.24-8.37), respectively. CONCLUSIONS Higher LOX index values were associated with an increased risk of CHD. Low LOX index values may be protective against ischemic stroke.


Hypertension | 2006

Protective Effect of Potassium Against the Hypertensive Cardiac Dysfunction: Association With Reactive Oxygen Species Reduction

Hiromitsu Matsui; Tatsuo Shimosawa; Yuzaburo Uetake; Hong Wang; Sayoko Ogura; Tomoyo Kaneko; Jing Liu; Katsuyuki Ando; Toshiro Fujita

Potassium supplementation has a potent protective effect against cardiovascular disease, but the precise mechanism of it against left ventricular abnormal relaxation, relatively early functional cardiac alteration in hypertensive subjects, has not been fully elucidated. In the present study, we investigated the effect of potassium against salt-induced cardiac dysfunction and the involved mechanism. Seven- to 8-week–old Dahl salt sensitive rats were fed normal diet (0.3% NaCl) or high-salt diet (8% NaCl) with or without high potassium (8% KCl) for 8 weeks. Left ventricular relaxation was evaluated by the deceleration time of early diastolic filling obtained from Doppler transmitral inflow, the slope of the pressure curve, and the time constant at the isovolumic relaxation phase. High-salt loading induced a significant elevation of blood pressure and impaired left ventricular relaxation, accompanied by augmentation of reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase activity in the cardiac tissue, measured by the lucigenin chemiluminescence method. Blood pressure lowering by hydralazine could not ameliorate NADPH oxidase activity and resulted in no improvement of left ventricular relaxation. Interestingly, although the blood pressure remained high, potassium supplementation as well as treatment with 4-hydroxy-2,2,6,6-tetramethyl-piperidine-N-oxyl, a superoxide dismutase mimetic, not only reduced the elevated NADPH oxidase activity but also improved the left ventricular relaxation. In conclusion, a high-potassium diet has a potent protective effect on left ventricular active relaxation independent of blood pressure, partly through the inhibition of cardiac NADPH oxidase activity. Sufficient potassium supplementation might be an attractive strategy for cardiac protection, especially in the salt-sensitive hypertensive subjects.


Journal of Hypertension | 2008

Paradoxical mineralocorticoid receptor activation and left ventricular diastolic dysfunction under high oxidative stress conditions.

Hong Wang; Tatsuo Shimosawa; Hiromitsu Matsui; Tomoyo Kaneko; Sayoko Ogura; Yuzaburo Uetake; Katsu Takenaka; Yutaka Yatomi; Toshiro Fujita

Background Salt status plays a pivotal role in angiotensin-II-induced organ damage by regulating reactive oxygen species status, and it is reported that reactive oxygen species activate mineralocorticoid receptors. Method To clarify the role of reactive oxygen species-related mineralocorticoid receptor activation in angiotensin-II-induced cardiac dysfunction, we examined the effect of the following: salt status; an MR antagonist, eplerenone; and an antioxidant, tempol in angiotensin-II-loaded Sprague–Dawley rats. Results Angiotensin-II/salt-loading elevated blood pressure, and neither eplerenone nor tempol antagonized the rise in blood pressure significantly. Left ventricular diastolic function was monitored by measuring peak velocity of a mitral early inflow (E), the ratio of mitral early inflow to atrial contraction related flow (E/A), deceleration time of mitral early inflow and −dP/dt, the time constant (T), and filling pressure (left ventricular end-diastolic pressure) by echocardiography or cardiac catheterization. Despite the suppressed serum aldosterone, left ventricular diastolic function was deteriorated with angiotensin II/high salt, but not affected by angiotensin II/low salt. However, angiotensin-II/salt-induced cardiac dysfunction was restored by eplerenone and tempol. Nicotinamide adenine dinucleotide phosphateoxidase-derived superoxide formation was greater in the hearts of the angiotensin II/high-salt rats than of the angiotensin II/low-salt rats. The expression of the Na+–H+ exchanger isoform 1, a target of mineralocorticoid receptor activation, was significantly increased in the angiotensin II/high-salt group. Both tempol and eplerenone inhibited the angiotensin-II/salt-induced upregulation of Na+–H+ exchanger isoform 1. Conclusion These findings demonstrate that mineralocorticoid receptor activation by oxidative stress can cause left ventricular diastolic dysfunction in a rat model of mild hypertension.


Current Hypertension Reports | 2014

Oxidative stress and organ damages.

Sayoko Ogura; Tatsuo Shimosawa

Oxidative stress plays a pivotal role in various pathological conditions, including hypertension, pulmonary hypertension, diabetes, and chronic kidney disease, with high levels of oxidative stress in target organs such as the heart, pancreas, kidney, and lung. Oxidative stress is known to activate multiple intracellular signaling, which induces apoptosis or cell overgrowth, leading to organ dysfunction. As such, targeting oxidative stress is thought to be effective in protecting against organ damage, and measuring oxidative stress status may serve as a biomarker in diverse disease states. Several new intrinsic anti-oxidative or pro-oxidative factors have recently been reported, and are potential new targets. In the present review, we focus on diabetes, pulmonary hypertension, and renal dysfunction, and their relation with new targets – adrenomedullin, oxidized LDL, and mineralocorticoid receptor.


American Journal of Physiology-endocrinology and Metabolism | 2012

NADPH oxidase-mediated Rac1 GTP activity is necessary for nongenomic actions of the mineralocorticoid receptor in the CA1 region of the rat hippocampus

Fumiko Kawakami-Mori; Tatsuo Shimosawa; Shengyu Mu; Hong Wang; Sayoko Ogura; Yutaka Yatomi; Toshiro Fujita

Mineralocorticoid receptors (MRs) in the central nervous system play important roles in spatial memory, fear memory, salt sensitivity, and hypertension. Corticosterone binds to MRs to induce presynaptic vesicle release and postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor aggregation, which are necessary for induction of long-term potentiation under psychological stress. On the other hand, cognitive dysfunction is an important problem clinically in patients with hypertension, diabetes, and cerebral infarction, and all of these conditions are associated with an increase in reactive oxygen species (ROS) generation. Oxidative stress has been shown to modify the genomic actions of MRs in the peripheral organs; however, there have been no reports until now about the relation between the nongenomic actions of MRs and ROS in the central nervous system. In this study, we investigated the relationship between ROS and the nongenomic actions of MR. We examined the nongenomic actions of MR by measuring the slope of the field excitatory postsynaptic potentials and found that ROS induced an additive increase of these potentials, which was accompanied by Rac1 GTP activation and ERK1/2 phosphorylation. An NADPH oxidase inhibitor, apocynin, blocked the nongenomic actions of MRs. A Rac1 inhibitor, NSC23766, was also found to block synaptic enhancement and ERK1/2 phosphorylation induced by NADPH and corticosterone. We concluded that NADPH oxidase activity and Rac1 GTP activity are indispensable for the nongenomic actions of MRs and that Rac1 GTP activation induces ERK1/2 phosphorylation in the brain.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Oxidative stress augments pulmonary hypertension in chronically hypoxic mice overexpressing the oxidized LDL receptor

Sayoko Ogura; Tatsuo Shimosawa; Shengyu Mu; Takashi Sonobe; Fumiko Kawakami-Mori; Hong Wang; Yuzaburo Uetake; Ken-ichi Yoshida; Yutaka Yatomi; Mikiyasu Shirai; Toshiro Fujita

Chronic hypoxia is one of the main causes of pulmonary hypertension (PH) associated with ROS production. Lectin-like oxidized low-density lipoprotein receptor (LOX)-1 is known to be an endothelial receptor of oxidized low-density lipoprotein, which is assumed to play a role in the initiation of ROS generation. We investigated the role of LOX-1 and ROS generation in PH and vascular remodeling in LOX-1 transgenic (TG) mice. We maintained 8- to 10-wk-old male LOX-1 TG mice and wild-type (WT) mice in normoxia (room air) or hypoxia (10% O2 chambers) for 3 wk. Right ventricular (RV) systolic pressure (RVSP) was comparable between the two groups under normoxic conditions; however, chronic hypoxia significantly increased RVSP and RV hypertrophy in LOX-1 TG mice compared with WT mice. Medial wall thickness of the pulmonary arteries was significantly greater in LOX-1 TG mice than in WT mice. Furthermore, hypoxia enhanced ROS production and nitrotyrosine expression in LOX-1 TG mice, supporting the observed pathological changes. Administration of the NADPH oxidase inhibitor apocynin caused a significant reduction in PH and vascular remodeling in LOX-1 TG mice. Our results suggest that LOX-1-ROS generation induces the development and progression of PH.


Lipids in Health and Disease | 2015

High-salt in addition to high-fat diet may enhance inflammation and fibrosis in liver steatosis induced by oxidative stress and dyslipidemia in mice

Yuzaburo Uetake; Hitoshi Ikeda; Rie Irie; Kazuaki Tejima; Hiromitsu Matsui; Sayoko Ogura; Hong Wang; Shengyu Mu; Daigoro Hirohama; Katsuyuki Ando; Tatsuya Sawamura; Yutaka Yatomi; Toshiro Fujita; Tatsuo Shimosawa

BackgroundIt is widely known that salt is an accelerating factor for the progression of metabolic syndrome and causes cardiovascular diseases, most likely due to its pro-oxidant properties. We hypothesized that excessive salt intake also facilitates the development of nonalcoholic steatohepatitis (NASH), which is frequently associated with metabolic syndrome.MethodsWe examined the exacerbating effect of high-salt diet on high-fat diet-induced liver injury in a susceptible model to oxidative stress, apoE knockout and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) transgenic mice.ResultsHigh-salt diet led to NASH in high-fat diet-fed LOX-1 transgenic/apoE knockout mice without affecting high-fat diet-induced dyslipidemia or hepatic triglyceride accumulation. Additionally, a high-salt and high-fat diet stimulated oxidative stress production and inflammatory reaction to a greater extent than did a high-fat diet in the liver of LOX-1 transgenic/apoE knockout mice.ConclusionsWe demonstrated that high-salt diet exacerbated NASH in high-fat diet-fed LOX-1 transgenic /apoE knockout mice and that this effect was associated with the stimulation of oxidative and inflammatory processes; this is the first study to suggest the important role of excessive salt intake in the development of NASH.


PLOS ONE | 2014

β2-adrenergic receptor-dependent attenuation of hypoxic pulmonary vasoconstriction prevents progression of pulmonary arterial hypertension in intermittent hypoxic rats

Hisashi Nagai; Ichiro Kuwahira; Daryl O. Schwenke; Hirotsugu Tsuchimochi; Akina Nara; Tadakatsu Inagaki; Sayoko Ogura; Yutaka Fujii; Keiji Umetani; Tatsuo Shimosawa; Kenichi Yoshida; James T. Pearson; Koichi Uemura; Mikiyasu Shirai

In sleep apnea syndrome (SAS), intermittent hypoxia (IH) induces repeated episodes of hypoxic pulmonary vasoconstriction (HPV) during sleep, which presumably contribute to pulmonary arterial hypertension (PAH). However, the prevalence of PAH was low and severity is mostly mild in SAS patients, and mild or no right ventricular hypertrophy (RVH) was reported in IH-exposed animals. The question then arises as to why PAH is not a universal finding in SAS if repeated hypoxia of sufficient duration causes cycling HPV. In the present study, rats underwent IH at a rate of 3 min cycles of 4–21% O2 for 8 h/d for 6w. Assessment of diameter changes in small pulmonary arteries in response to acute hypoxia and drugs were performed using synchrotron radiation microangiography on anesthetized rats. In IH-rats, neither PAH nor RVH was observed and HPV was strongly reversed. Nadolol (a hydrophilic β1, 2-blocker) augmented the attenuated HPV to almost the same level as that in N-rats, but atenolol (a hydrophilic β1-blocker) had no effect on the HPV in IH. These β-blockers had almost no effect on the HPV in N-rats. Chronic administration of nadolol during 6 weeks of IH exposure induced PAH and RVH in IH-rats, but did not in N-rats. Meanwhile, atenolol had no effect on morphometric and hemodynamic changes in N and IH-rats. Protein expression of the β1-adrenergic receptor (AR) was down-regulated while that of β2AR was preserved in pulmonary arteries of IH-rats. Phosphorylation of p85 (chief component of phosphoinositide 3-kinase (PI3K)), protein kinase B (Akt), and endothelial nitric oxide synthase (eNOS) were abrogated by chronic administration of nadolol in the lung tissue of IH-rats. We conclude that IH-derived activation of β2AR in the pulmonary arteries attenuates the HPV, thereby preventing progression of IH-induced PAH. This protective effect may depend on the β2AR-Gi mediated PI3K/Akt/eNOS signaling pathway.


PLOS ONE | 2015

Pulmonary Macrophages Attenuate Hypoxic Pulmonary Vasoconstriction via β3AR/iNOS Pathway in Rats Exposed to Chronic Intermittent Hypoxia.

Hisashi Nagai; Ichiro Kuwahira; Daryl O. Schwenke; Hirotsugu Tsuchimochi; Akina Nara; Sayoko Ogura; Takashi Sonobe; Tadakatsu Inagaki; Yutaka Fujii; Rutsuko Yamaguchi; Lisa Wingenfeld; Keiji Umetani; Tatsuo Shimosawa; Kenichi Yoshida; Koichi Uemura; James T. Pearson; Mikiyasu Shirai

Chronic intermittent hypoxia (IH) induces activation of the sympathoadrenal system, which plays a pivotal role in attenuating hypoxic pulmonary vasoconstriction (HPV) via central β1-adrenergic receptors (AR) (brain) and peripheral β2AR (pulmonary arteries). Prolonged hypercatecholemia has been shown to upregulate β3AR. However, the relationship between IH and β3AR in the modification of HPV is unknown. It has been observed that chronic stimulation of β3AR upregulates inducible nitric oxide synthase (iNOS) in cardiomyocytes and that IH exposure causes expression of iNOS in RAW264.7 macrophages. iNOS has been shown to have the ability to dilate pulmonary vessels. Hence, we hypothesized that chronic IH activates β3AR/iNOS signaling in pulmonary macrophages, leading to the promotion of NO secretion and attenuated HPV. Sprague-Dawley rats were exposed to IH (3-min periods of 4–21% O2) for 8 h/d for 6 weeks. The urinary catecholamine concentrations of IH rats were high compared with those of controls, indicating activation of the sympathoadrenal system following chronic IH. Interestingly, chronic IH induced the migration of circulating monocytes into the lungs and the predominant increase in the number of pro-inflammatory pulmonary macrophages. In these macrophages, both β3AR and iNOS were upregulated and stimulation of the β3AR/iNOS pathway in vitro caused them to promote NO secretion. Furthermore, in vivo synchrotron radiation microangiography showed that HPV was significantly attenuated in IH rats and the attenuated HPV was fully restored by blockade of β3AR/iNOS pathway or depletion of pulmonary macrophages. These results suggest that circulating monocyte-derived pulmonary macrophages attenuate HPV via activation of β3AR/iNOS signaling in chronic IH.

Collaboration


Dive into the Sayoko Ogura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge