Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiromu Tanimoto is active.

Publication


Featured researches published by Hiromu Tanimoto.


The Journal of Comparative Neurology | 2008

Neuronal assemblies of the Drosophila mushroom body

Nobuaki Tanaka; Hiromu Tanimoto; Kei Ito

The mushroom body (MB) of the insect brain has important roles in odor learning and memory and in diverse other brain functions. To elucidate the anatomical basis underlying its function, we studied how the MB of Drosophila is organized by its intrinsic and extrinsic neurons. We screened for the GAL4 enhancer‐trap strains that label specific subsets of these neurons and identified seven subtypes of Kenyon cells and three other intrinsic neuron types. Laminar organization of the Kenyon cell axons divides the pedunculus into at least five concentric strata. The α′, β′, α, and β lobes are each divided into three strata, whereas the γ lobe appears more homogeneous. The outermost stratum of the α/β lobes is specifically connected with a small, protruded subregion of the calyx, the accessory calyx, which does not receive direct olfactory input. As for the MB extrinsic neurons (MBENs), we found three types of antennal lobe projection neurons, among which two are novel. In addition, we resolved 17 other types of MBENs that arborize in the calyx, lobes, and pedunculus. Lobe‐associated MBENs arborize in only specific areas of the lobes, being restricted along their longitudinal axes, forming two to five segmented zones in each lobe. The laminar arrangement of the Kenyon cell axons and segmented organization of the MBENs together divide the lobes into smaller synaptic units, possibly facilitating characteristic interaction between intrinsic and extrinsic neurons in each unit for different functional activities along the longitudinal lobe axes and between lobes. Structural differences between lobes are also discussed. J. Comp. Neurol. 508:711–755, 2008.


Nature | 2012

A subset of dopamine neurons signals reward for odour memory in Drosophila

Chang Liu; Pierre-Yves Plaçais; Nobuhiro Yamagata; Barret D. Pfeiffer; Yoshinori Aso; Anja Friedrich; Igor Siwanowicz; Gerald M. Rubin; Thomas Preat; Hiromu Tanimoto

Animals approach stimuli that predict a pleasant outcome. After the paired presentation of an odour and a reward, Drosophila melanogaster can develop a conditioned approach towards that odour. Despite recent advances in understanding the neural circuits for associative memory and appetitive motivation, the cellular mechanisms for reward processing in the fly brain are unknown. Here we show that a group of dopamine neurons in the protocerebral anterior medial (PAM) cluster signals sugar reward by transient activation and inactivation of target neurons in intact behaving flies. These dopamine neurons are selectively required for the reinforcing property of, but not a reflexive response to, the sugar stimulus. In vivo calcium imaging revealed that these neurons are activated by sugar ingestion and the activation is increased on starvation. The output sites of the PAM neurons are mainly localized to the medial lobes of the mushroom bodies (MBs), where appetitive olfactory associative memory is formed. We therefore propose that the PAM cluster neurons endow a positive predictive value to the odour in the MBs. Dopamine in insects is known to mediate aversive reinforcement signals. Our results highlight the cellular specificity underlying the various roles of dopamine and the importance of spatially segregated local circuits within the MBs.


Journal of Neurogenetics | 2009

The Mushroom Body of Adult Drosophila Characterized by GAL4 Drivers

Yoshinori Aso; Kornelia Grübel; Sebastian Busch; Anja Friedrich; Igor Siwanowicz; Hiromu Tanimoto

Abstract: The mushroom body is required for a variety of behaviors of Drosophila melanogaster. Different types of intrinsic and extrinsic mushroom body neurons might underlie its functional diversity. There have been many GAL4 driver lines identified that prominently label the mushroom body intrinsic neurons, which are known as “Kenyon cells.” Under one constant experimental condition, we analyzed and compared the the expression patterns of 25 GAL4 drivers labeling the mushroom body. As an internet resource, we established a digital catalog indexing representative confocal data of them. Further more, we counted the number of GAL4-positive Kenyon cells in each line. We found that approximately 2,000 Kenyon cells can be genetically labeled in total. Three major Kenyon cell subtypes, the γ, α′/β′, and α/β neurons, respectively, contribute to 33, 18, and 49% of 2,000 Kenyon cells. Taken together, this study lays groundwork for functional dissection of the mushroom body.


eLife | 2014

The neuronal architecture of the mushroom body provides a logic for associative learning

Yoshinori Aso; Daisuke Hattori; Yang Yu; Rebecca M. Johnston; Nirmala Iyer; Teri-T B. Ngo; Heather Dionne; L. F. Abbott; Richard Axel; Hiromu Tanimoto; Gerald M. Rubin

We identified the neurons comprising the Drosophila mushroom body (MB), an associative center in invertebrate brains, and provide a comprehensive map describing their potential connections. Each of the 21 MB output neuron (MBON) types elaborates segregated dendritic arbors along the parallel axons of ∼2000 Kenyon cells, forming 15 compartments that collectively tile the MB lobes. MBON axons project to five discrete neuropils outside of the MB and three MBON types form a feedforward network in the lobes. Each of the 20 dopaminergic neuron (DAN) types projects axons to one, or at most two, of the MBON compartments. Convergence of DAN axons on compartmentalized Kenyon cell–MBON synapses creates a highly ordered unit that can support learning to impose valence on sensory representations. The elucidation of the complement of neurons of the MB provides a comprehensive anatomical substrate from which one can infer a functional logic of associative olfactory learning and memory. DOI: http://dx.doi.org/10.7554/eLife.04577.001


Nature | 1999

brinker is a target of Dpp in Drosophila that negatively regulates Dpp-dependent genes

Maki Minami; Noriyuki Kinoshita; Yuko Kamoshida; Hiromu Tanimoto; Tetsuya Tabata

Growth and patterning of the Drosophila wing is controlled in part by the long-range organizing activities of the Decapentaplegic protein (Dpp). Dpp is synthesized by cells that line the anterior side of the anterior/posterior compartment border of the wing imaginal disc. From this source, Dpp is thought to generate a concentration gradient that patterns both anterior and posterior compartments. Among the gene targets that it regulates are optomotor blind (omb), spalt (sal), and daughters against dpp (dad). We report here the molecular cloning of brinker (brk), and show that brk expression is repressed by dpp. brk encodes, a protein that negatively regulates Dpp-dependent genes. Expression of brk in Xenopus embryos indicates that brk can also repress the targets of a vertebrate homologue of Dpp, bone morphogenetic protein 4 (BMP-4). The evolutionary conservation of Brk function underscores the importance of its negative role in proportioning Dpp activity.


Current Biology | 2010

Specific Dopaminergic Neurons for the Formation of Labile Aversive Memory

Yoshinori Aso; Igor Siwanowicz; Lasse Bräcker; Kei Ito; Toshihiro Kitamoto; Hiromu Tanimoto

A paired presentation of an odor and electric shock induces aversive odor memory in Drosophila melanogaster. Electric shock reinforcement is mediated by dopaminergic neurons, and it converges with the odor signal in the mushroom body (MB). Dopamine is synthesized in approximately 280 neurons that form distinct cell clusters and is involved in a variety of brain functions. Recently, one of the dopaminergic clusters (PPL1) that includes MB-projecting neurons was shown to signal reinforcement for aversive odor memory. As each dopaminergic cluster contains multiple types of neurons with different projections and physiological characteristics, functional understanding of the circuit for aversive memory requires cellular identification. Here, we show that MB-M3, a specific type of dopaminergic neurons in the PAM cluster, is preferentially required for the formation of labile memory. Strikingly, flies formed significant aversive odor memory without electric shock when MB-M3 was selectively stimulated together with odor presentation. In addition, we identified another type of dopaminergic neurons in the PPL1 cluster, MB-MP1, which can induce aversive odor memory. As MB-M3 and MB-MP1 target the distinct subdomains of the MB, these reinforcement circuits might induce different forms of aversive memory in spatially segregated synapses in the MB.


Current Opinion in Neurobiology | 2004

An engram found? Evaluating the evidence from fruit flies

Bertram Gerber; Hiromu Tanimoto; Martin Heisenberg

Is it possible to localize a memory trace to a subset of cells in the brain? If so, it should be possible to show: first, that neuronal plasticity occurs in these cells. Second, that neuronal plasticity in these cells is sufficient for memory. Third, that neuronal plasticity in these cells is necessary for memory. Fourth, that memory is abolished if these cells cannot provide output during testing. And fifth, that memory is abolished if these cells cannot receive input during training. With regard to olfactory learning in flies, we argue that the notion of the olfactory memory trace being localized to the Kenyon cells of the mushroom bodies is a reasonable working hypothesis.


eLife | 2014

Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila

Yoshinori Aso; Divya Sitaraman; Toshiharu Ichinose; Karla R. Kaun; Katrin Vogt; Ghislain Belliart-Guérin; Pierre-Yves Plaçais; Alice A. Robie; Nobuhiro Yamagata; Christopher Schnaitmann; William J Rowell; Rebecca M. Johnston; Teri-T B. Ngo; Nan Chen; Wyatt Korff; Michael N. Nitabach; Ulrike Heberlein; Thomas Preat; Kristin Branson; Hiromu Tanimoto; Gerald M. Rubin

Animals discriminate stimuli, learn their predictive value and use this knowledge to modify their behavior. In Drosophila, the mushroom body (MB) plays a key role in these processes. Sensory stimuli are sparsely represented by ∼2000 Kenyon cells, which converge onto 34 output neurons (MBONs) of 21 types. We studied the role of MBONs in several associative learning tasks and in sleep regulation, revealing the extent to which information flow is segregated into distinct channels and suggesting possible roles for the multi-layered MBON network. We also show that optogenetic activation of MBONs can, depending on cell type, induce repulsion or attraction in flies. The behavioral effects of MBON perturbation are combinatorial, suggesting that the MBON ensemble collectively represents valence. We propose that local, stimulus-specific dopaminergic modulation selectively alters the balance within the MBON network for those stimuli. Our results suggest that valence encoded by the MBON ensemble biases memory-based action selection. DOI: http://dx.doi.org/10.7554/eLife.04580.001


Nature | 2004

Experimental psychology: event timing turns punishment to reward.

Hiromu Tanimoto; Martin Heisenberg; Bertram Gerber

Can relief from pain be a pleasure? If so, noxious events should — despite their typically aversive effects — also have a ‘rewarding’ after-effect. Through training fruitflies by using an electric shock paired with an odour, we show here that the shock can condition either avoidance of this odour or approach to it. These opposing behaviours depend on the relative timing of the shock and odour presentations during training, and indicate that a shock can act as either an aversive reinforcer or an appetitive one.


Nature Neuroscience | 2012

Identification of a dopamine pathway that regulates sleep and arousal in Drosophila

Taro Ueno; Jun Tomita; Hiromu Tanimoto; Keita Endo; Kei Ito; Shoen Kume; Kazuhiko Kume

Sleep is required to maintain physiological functions, including memory, and is regulated by monoamines across species. Enhancement of dopamine signals by a mutation in the dopamine transporter (DAT) decreases sleep, but the underlying dopamine circuit responsible for this remains unknown. We found that the D1 dopamine receptor (DA1) in the dorsal fan-shaped body (dFSB) mediates the arousal effect of dopamine in Drosophila. The short sleep phenotype of the DAT mutant was completely rescued by an additional mutation in the DA1 (also known as DopR) gene, but expression of wild-type DA1 in the dFSB restored the short sleep phenotype. We found anatomical and physiological connections between dopamine neurons and the dFSB neuron. Finally, we used mosaic analysis with a repressive marker and found that a single dopamine neuron projecting to the FSB activated arousal. These results suggest that a local dopamine pathway regulates sleep.

Collaboration


Dive into the Hiromu Tanimoto's collaboration.

Top Co-Authors

Avatar

Yoshinori Aso

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerald M. Rubin

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bertram Gerber

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge