Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroshi Kondoh is active.

Publication


Featured researches published by Hiroshi Kondoh.


Ageing Research Reviews | 2013

Oxidative stress and cancer: an overview.

Venus Sosa; Teresa Moliné; Rosa Somoza; Rosanna Paciucci; Hiroshi Kondoh; Matilde E. Lleonart

Reactive species, which mainly include reactive oxygen species (ROS), are products generated as a consequence of metabolic reactions in the mitochondria of eukaryotic cells. In normal cells, low-level concentrations of these compounds are required for signal transduction before their elimination. However, cancer cells, which exhibit an accelerated metabolism, demand high ROS concentrations to maintain their high proliferation rate. Different ways of developing ROS resistance include the execution of alternative pathways, which can avoid large amounts of ROS accumulation without compromising the energy demand required by cancer cells. Examples of these processes include the guidance of the glycolytic pathway into the pentose phosphate pathway (PPP) and/or the generation of lactate instead of employing aerobic respiration in the mitochondria. Importantly, ROS levels can be used as a thermostat to monitor the damage that cells can bear. The implications for ROS regulation are highly significant for cancer therapy because commonly used radio- and chemotherapeutic drugs influence tumor outcome through ROS modulation. Moreover, the discovery of novel biomarkers that are able to predict the clinical response to pro-oxidant therapies is a crucial challenge to overcome to allow for the personalization of cancer therapies.


Experimental Cell Research | 2008

Cellular life span and the Warburg effect

Hiroshi Kondoh

Enhanced glycolysis is observed in most of cancerous cells and tissues, called as the Warburg effect. Recent advance in senescent biology implicates that the metabolic shift to enhanced glycolysis would be involved in the early stage during multi-step tumorigenesis in vivo. Enhanced glycolysis is essential both in the step of immortalization and transformation, as it renders cells resistant to oxidative stress and adaptive to hypoxic condition, respectively. ES, immortalized primary, and cancerous cells display the common concerted metabolic shift, including enhanced glycolysis with reduced mitochondrial respiration by poorly characterized mechanism. Discovery of a novel regulatory mechanism for such a metabolic shift might be essential for the future development of cancer diagnosis and anti-cancer therapy.


Molecular Cancer | 2009

Senescence induction; a possible cancer therapy

Matilde E. Lleonart; Ana Artero-Castro; Hiroshi Kondoh

Cellular immortalization is a crucial step during the development of human cancer. Primary mammalian cells reach replicative exhaustion after several passages in vitro, a process called replicative senescence. During such a state of permanent growth arrest, senescent cells are refractory to physiological proliferation stimuli: they have altered cell morphology and gene expression patterns, although they remain viable with preserved metabolic activity. Interestingly, senescent cells have also been detected in vivo in human tumors, particularly in benign lesions. Senescence is a mechanism that limits cellular lifespan and constitutes a barrier against cellular immortalization. During immortalization, cells acquire genetic alterations that override senescence. Tumor suppressor genes and oncogenes are closely involved in senescence, as their knockdown and ectopic expression confer immortality and senescence induction, respectively. By using high throughput genetic screening to search for genes involved in senescence, several candidate oncogenes and putative tumor suppressor genes have been recently isolated, including subtypes of micro-RNAs. These findings offer new perspectives in the modulation of senescence and open new approaches for cancer therapy.


PLOS ONE | 2013

miR-125b acts as a tumor suppressor in breast tumorigenesis via its novel direct targets ENPEP, CK2-α, CCNJ, and MEGF9.

Andrea Feliciano; Josep Castellví; Ana Artero-Castro; Jose A. Leal; Cleofé Romagosa; Javier Hernández-Losa; Vicente Peg; Angels Fabra; Francisco Vidal; Hiroshi Kondoh; Santiago Ramón y Cajal; Matilde E. Lleonart

MicroRNAs (miRNAs) play important roles in diverse biological processes and are emerging as key regulators of tumorigenesis and tumor progression. To explore the dysregulation of miRNAs in breast cancer, a genome-wide expression profiling of 939 miRNAs was performed in 50 breast cancer patients. A total of 35 miRNAs were aberrantly expressed between breast cancer tissue and adjacent normal breast tissue and several novel miRNAs were identified as potential oncogenes or tumor suppressor miRNAs in breast tumorigenesis. miR-125b exhibited the largest decrease in expression. Enforced miR-125b expression in mammary cells decreased cell proliferation by inducing G2/M cell cycle arrest and reduced anchorage-independent cell growth of cells of mammary origin. miR-125b was found to perform its tumor suppressor function via the direct targeting of the 3’-UTRs of ENPEP, CK2-α, CCNJ, and MEGF9 mRNAs. Silencing these miR-125b targets mimicked the biological effects of miR-125b overexpression, confirming that they are modulated by miR-125b. Analysis of ENPEP, CK2-α, CCNJ, and MEGF9 protein expression in breast cancer patients revealed that they were overexpressed in 56%, 40–56%, 20%, and 32% of the tumors, respectively. The expression of ENPEP and CK2-α was inversely correlated with miR-125b expression in breast tumors, indicating the relevance of these potential oncogenic proteins in breast cancer patients. Our results support a prognostic role for CK2-α, whose expression may help clinicians predict breast tumor aggressiveness. In particular, our results show that restoration of miR-125b expression or knockdown of ENPEP, CK2-α, CCNJ, or MEGF9 may provide novel approaches for the treatment of breast cancer.


Molecular and Cellular Biology | 2009

Cold-Inducible RNA-Binding Protein Bypasses Replicative Senescence in Primary Cells through Extracellular Signal-Regulated Kinase 1 and 2 Activation

Ana Artero-Castro; Francisco B. Callejas; Josep Castellví; Hiroshi Kondoh; Amancio Carnero; Pablo J. Fernandez-Marcos; Manuel Serrano; Santiago Ramón y Cajal; Matilde E. Lleonart

ABSTRACT Embryonic stem cells are immortalized cells whose proliferation rate is comparable to that of carcinogenic cells. To study the expression of embryonic stem cell genes in primary cells, genetic screening was performed by infecting mouse embryonic fibroblasts (MEFs) with a cDNA library from embryonic stem cells. Cold-inducible RNA-binding protein (CIRP) was identified due to its ability to bypass replicative senescence in primary cells. CIRP enhanced extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation, and treatment with an MEK inhibitor decreased the proliferation caused by CIRP. In contrast to CIRP upregulation, CIRP downregulation decreased cell proliferation and resulted in inhibition of phosphorylated ERK1/2 inhibition. This is the first evidence that ERK1/2 activation, through the same mechanism as that described for a Val12 mutant K-ras to induce premature senescence, is able to bypass senescence in the absence of p16INK4a, p21WAF1, and p19ARF upregulation. Moreover, these results show that CIRP functions by stimulating general protein synthesis with the involvement of the S6 and 4E-BP1 proteins. The overall effect is an increase in kinase activity of the cyclin D1-CDK4 complex, which is in accordance with the proliferative capacity of CIRP MEFs. Interestingly, CIRP mRNA and protein were upregulated in a subgroup of cancer patients, a finding that may be of relevance for cancer research.


Genes to Cells | 1996

The regulatory subunits of fission yeast protein phosphatase 2A (PP2A) affect cell morphogenesis, cell wall synthesis and cytokinesis

Kazuhisa Kinoshita; Takeshi Nemoto; Kentaro Nabeshima; Hiroshi Kondoh; Hajime Niwa; Mitsuhiro Yanagida

Background:  Protein phosphatase 2A (PP2A) holoenzymes have a trimeric structure, consisting of a catalytic subunit C and two regulatory subunits A (PR65) and B (PR55). In fission yeast the C subunits, being 80% identical to their mammalian counterparts, are essential for viability and negatively regulate the entry into mitosis. Genetic analyses in budding yeast and Drosophila show that the regulatory subunits are implicated in chromosome segregation, cell morphogenesis and/or cytokinesis.


Proceedings of the National Academy of Sciences of the United States of America | 2010

HIV-1 viral infectivity factor interacts with TP53 to induce G2 cell cycle arrest and positively regulate viral replication

Taisuke Izumi; Katsuhiro Io; Masashi Matsui; Kotaro Shirakawa; Masanobu Shinohara; Yuya Nagai; Masahiro Kawahara; Masayuki Kobayashi; Hiroshi Kondoh; Naoko Misawa; Yoshio Koyanagi; Takashi Uchiyama; Akifumi Takaori-Kondo

Viral infectivity factor, an accessory protein encoded in the HIV-1 genome, induces G2 cell cycle arrest; however, the biological significance and mechanism(s) remain totally unclear. Here we demonstrate that the TP53 pathway is involved in Vif-mediated G2 cell cycle arrest. Vif enhances the stability and transcriptional activity of TP53 by blocking the MDM2-mediated ubiquitination and nuclear export of TP53. Furthermore, Vif causes G2 cell cycle arrest in a TP53-dependent manner. HXB2 Vif lacks these activities toward TP53 and cannot induce G2 cell cycle arrest. Using mutagenesis, we demonstrate that the critical residues for this function are located in the N-terminal region of Vif. Finally, we construct a mutant NL4-3 virus with an NL4-3/HXB2 chimeric Vif defective for the ability to induce cell cycle arrest and show that the mutant virus replicates less effectively than the wild-type NL4-3 virus in T cells expressing TP53. These data imply that Vif induces G2 cell cycle arrest through functional interaction with the TP53/MDM2 axis and that the G2 cell cycle arrest induced by Vif has a positive effect on HIV-1 replication. This report demonstrates the molecular mechanisms and the biological significance of Vif-mediated G2 cell cycle arrest for HIV-1 infection.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Individual variability in human blood metabolites identifies age-related differences

Romanas Chaleckis; Itsuo Murakami; Junko Takada; Hiroshi Kondoh; Mitsuhiro Yanagida

Significance Human blood provides a rich source of information about metabolites that reflects individual differences in health, disease, diet, and lifestyle. The coefficient of variation for human blood metabolites enriched in red blood cells or plasma was quantified after careful preparation. We identified 14 age-related metabolites. Metabolites that decline strikingly in the elderly include antioxidants and compounds involved in high physical activity, including carnosine, UDP-acetyl-glucosamine, ophthalmic acid,1,5-anhydroglucitol, NAD+, and leucine. Metabolites that increase significantly in the elderly include compounds related to declining renal and liver function. Statistical analysis suggests that certain age-related compounds that either increased or decreased in the elderly are correlated. Individual variability in blood metabolites may lead to identify candidates for markers of human aging or relevant diseases. Metabolites present in human blood document individual physiological states influenced by genetic, epigenetic, and lifestyle factors. Using high-resolution liquid chromatography-mass spectrometry (LC-MS), we performed nontargeted, quantitative metabolomics analysis in blood of 15 young (29 ± 4 y of age) and 15 elderly (81 ± 7 y of age) individuals. Coefficients of variation (CV = SD/mean) were obtained for 126 blood metabolites of all 30 donors. Fifty-five RBC-enriched metabolites, for which metabolomics studies have been scarce, are highlighted here. We found 14 blood compounds that show remarkable age-related increases or decreases; they include 1,5-anhydroglucitol, dimethyl-guanosine, acetyl-carnosine, carnosine, ophthalmic acid, UDP-acetyl-glucosamine, N-acetyl-arginine, N6-acetyl-lysine, pantothenate, citrulline, leucine, isoleucine, NAD+, and NADP+. Six of them are RBC-enriched, suggesting that RBC metabolomics is highly valuable for human aging research. Age differences are partly explained by a decrease in antioxidant production or increasing inefficiency of urea metabolism among the elderly. Pearson’s coefficients demonstrated that some age-related compounds are correlated, suggesting that aging affects them concomitantly. Although our CV values are mostly consistent with those CVs previously published, we here report previously unidentified CVs of 51 blood compounds. Compounds having moderate to high CV values (0.4–2.5) are often modified. Compounds having low CV values, such as ATP and glutathione, may be related to various diseases because their concentrations are strictly controlled, and changes in them would compromise health. Thus, human blood is a rich source of information about individual metabolic differences.


Retrovirology | 2009

MDM2 is a novel E3 ligase for HIV-1 Vif

Taisuke Izumi; Akifumi Takaori-Kondo; Kotaro Shirakawa; Hiroaki Higashitsuji; Katsuhiko Itoh; Katsuhiro Io; Masashi Matsui; Kazuhiro Iwai; Hiroshi Kondoh; Toshihiro Sato; Mitsunori Tomonaga; Satoru Ikeda; Hirofumi Akari; Yoshio Koyanagi; Jun Fujita; Takashi Uchiyama

The human immunodeficiency virus type 1 (HIV-1) Vif plays a crucial role in the viral life cycle by antagonizing a host restriction factor APOBEC3G (A3G). Vif interacts with A3G and induces its polyubiquitination and subsequent degradation via the formation of active ubiquitin ligase (E3) complex with Cullin5-ElonginB/C. Although Vif itself is also ubiquitinated and degraded rapidly in infected cells, precise roles and mechanisms of Vif ubiquitination are largely unknown. Here we report that MDM2, known as an E3 ligase for p53, is a novel E3 ligase for Vif and induces polyubiquitination and degradation of Vif. We also show the mechanisms by which MDM2 only targets Vif, but not A3G that binds to Vif. MDM2 reduces cellular Vif levels and reversely increases A3G levels, because the interaction between MDM2 and Vif precludes A3G from binding to Vif. Furthermore, we demonstrate that MDM2 negatively regulates HIV-1 replication in non-permissive target cells through Vif degradation. These data suggest that MDM2 is a regulator of HIV-1 replication and might be a novel therapeutic target for anti-HIV-1 drug.


COPD: Journal of Chronic Obstructive Pulmonary Disease | 2012

Impact of COPD exacerbations on osteoporosis assessed by chest CT scan.

Hirofumi Kiyokawa; Shigeo Muro; Tsuyoshi Oguma; Susumu Sato; Naoya Tanabe; Tamaki Takahashi; Megumi Kudo; Daisuke Kinose; Hiroshi Kondoh; Takeshi Kubo; Yuma Hoshino; Emiko Ogawa; Toyohiro Hirai; Michiaki Mishima

Abstract Background: COPD pathology involves not only the lungs but also extrapulmonary abnormalities. Osteoporosis is one of the most important abnormalities because it may cause vertebral compression fractures and deteriorate pulmonary function. COPD patients have many risk factors for osteoporosis, such as low BMI, decreased activity, systemic inflammation, and use of corticosteroids. Some of these factors have been shown to deteriorate with COPD exacerbations. We previously demonstrated the correlation between emphysema and osteoporosis and between emphysema progression and COPD exacerbations. Thus, the hypothesis that exacerbation causes osteoporosis progression in COPD patients was investigated. Methods: Forty-two COPD patients not on osteoporosis treatment for over 2 years were recruited. During follow-up, exacerbations had been prospectively recorded. Thoracic vertebral bone mineral density (BMD) was measured using chest CT, and the annual change in BMD was calculated. The change was compared between patients with and without a history of exacerbations. Results: The decrease in thoracic vertebral BMD was greater in patients with than in those without a history of exacerbations (median ΔBMD mg/ml⋅year: –3.78 versus –0.30, p = 0.02). Moreover, multivariate regression analysis showed that exacerbations and baseline PaO2 were independent predictors of the BMD decrease (R2 = 0.20, p = 0.007, and R2 = 0.09, p = 0.03, respectively) after adjustment for baseline age, smoking status, and airflow limitation. Conclusions: This is the first longitudinal study to demonstrate that COPD exacerbations are independently associated with osteoporosis progression. Osteoporosis progression should be evaluated in COPD patients, especially in those with a history of frequent exacerbations.

Collaboration


Dive into the Hiroshi Kondoh's collaboration.

Top Co-Authors

Avatar

Matilde E. Lleonart

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Mitsuhiro Yanagida

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Romanas Chaleckis

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomáš Pluskal

Okinawa Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge