Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroshi Minami is active.

Publication


Featured researches published by Hiroshi Minami.


Nucleic Acids Research | 2011

RiceXPro: a platform for monitoring gene expression in japonica rice grown under natural field conditions.

Yutaka Sato; Baltazar A. Antonio; Nobukazu Namiki; Hinako Takehisa; Hiroshi Minami; Kaori Kamatsuki; Kazuhiko Sugimoto; Yuji Shimizu; Hirohiko Hirochika; Yoshiaki Nagamura

Elucidating the function of all predicted genes in rice remains as the ultimate goal in cereal genomics in order to ensure the development of improved varieties that will sustain an expanding world population. We constructed a gene expression database (RiceXPro, URL: http://ricexpro.dna.affrc.go.jp/) to provide an overview of the transcriptional changes throughout the growth of the rice plant in the field. RiceXPro contains two data sets corresponding to spatiotemporal gene expression profiles of various organs and tissues, and continuous gene expression profiles of leaf from transplanting to harvesting. A user-friendly web interface enables the extraction of specific gene expression profiles by keyword and chromosome search, and basic data analysis, thereby providing useful information as to the organ/tissue and developmental stage specificity of expression of a particular gene. Analysis tools such as t-test, calculation of fold change and degree of correlation facilitate the comparison of expression profiles between two random samples and the prediction of function of uncharacterized genes. As a repository of expression data encompassing growth in the field, this database can provide baseline information of genes that underlie various agronomically important traits in rice.


Nucleic Acids Research | 2013

RiceXPro Version 3.0: expanding the informatics resource for rice transcriptome

Yutaka Sato; Hinako Takehisa; Kaori Kamatsuki; Hiroshi Minami; Nobukazu Namiki; Hiroshi Ikawa; Hajime Ohyanagi; Kazuhiko Sugimoto; Baltazar A. Antonio; Yoshiaki Nagamura

A wide range of resources on gene expression profiling enhance various strategies in plant molecular biology particularly in characterization of gene function. We have updated our gene expression profile database, RiceXPro (http://ricexpro.dna.affrc.go.jp/), to provide more comprehensive information on the transcriptome of rice encompassing the entire growth cycle and various experimental conditions. The gene expression profiles are currently grouped into three categories, namely, ‘field/development’ with 572 data corresponding to 12 data sets, ‘plant hormone’ with 143 data corresponding to 13 data sets and ‘cell- and tissue-type’ comprising of 38 microarray data. In addition to the interface for retrieving expression information of a gene/genes in each data set, we have incorporated an interface for a global approach in searching an overall view of the gene expression profiles from multiple data sets within each category. Furthermore, we have also added a BLAST search function that enables users to explore expression profile of a gene/genes with similarity to a query sequence. Therefore, the updated version of RiceXPro can be used more efficiently to survey the gene expression signature of rice in sufficient depth and may also provide clues on gene function of other cereal crops.


BMC Genomics | 2009

KAIKObase: An integrated silkworm genome database and data mining tool

Michihiko Shimomura; Hiroshi Minami; Yoshitaka Suetsugu; Hajime Ohyanagi; Chikatada Satoh; Baltazar A. Antonio; Yoshiaki Nagamura; Keiko Kadono-Okuda; Hideyuki Kajiwara; Hideki Sezutsu; Javaregowda Nagaraju; Marian R. Goldsmith; Qingyou Xia; Kimiko Yamamoto; Kazuei Mita

BackgroundThe silkworm, Bombyx mori, is one of the most economically important insects in many developing countries owing to its large-scale cultivation for silk production. With the development of genomic and biotechnological tools, B. mori has also become an important bioreactor for production of various recombinant proteins of biomedical interest. In 2004, two genome sequencing projects for B. mori were reported independently by Chinese and Japanese teams; however, the datasets were insufficient for building long genomic scaffolds which are essential for unambiguous annotation of the genome. Now, both the datasets have been merged and assembled through a joint collaboration between the two groups.DescriptionIntegration of the two data sets of silkworm whole-genome-shotgun sequencing by the Japanese and Chinese groups together with newly obtained fosmid- and BAC-end sequences produced the best continuity (~3.7 Mb in N50 scaffold size) among the sequenced insect genomes and provided a high degree of nucleotide coverage (88%) of all 28 chromosomes. In addition, a physical map of BAC contigs constructed by fingerprinting BAC clones and a SNP linkage map constructed using BAC-end sequences were available. In parallel, proteomic data from two-dimensional polyacrylamide gel electrophoresis in various tissues and developmental stages were compiled into a silkworm proteome database. Finally, a Bombyx trap database was constructed for documenting insertion positions and expression data of transposon insertion lines.ConclusionFor efficient usage of genome information for functional studies, genomic sequences, physical and genetic map information and EST data were compiled into KAIKObase, an integrated silkworm genome database which consists of 4 map viewers, a gene viewer, and sequence, keyword and position search systems to display results and data at the level of nucleotide sequence, gene, scaffold and chromosome. Integration of the silkworm proteome database and the Bombyx trap database with KAIKObase led to a high-grade, user-friendly, and comprehensive silkworm genome database which is now available from URL: http://sgp.dna.affrc.go.jp/KAIKObase/.


Genome Biology | 2008

A BAC-based integrated linkage map of the silkworm Bombyx mori

Kimiko Yamamoto; Junko Nohata; Keiko Kadono-Okuda; Junko Narukawa; Motoe Sasanuma; Shun-ichi Sasanuma; Hiroshi Minami; Michihiko Shimomura; Yoshitaka Suetsugu; Yutaka Banno; Kazutoyo Osoegawa; Pieter J. de Jong; Marian R. Goldsmith; Kazuei Mita

BackgroundIn 2004, draft sequences of the model lepidopteran Bombyx mori were reported using whole-genome shotgun sequencing. Because of relatively shallow genome coverage, the silkworm genome remains fragmented, hampering annotation and comparative genome studies. For a more complete genome analysis, we developed extended scaffolds combining physical maps with improved genetic maps.ResultsWe mapped 1,755 single nucleotide polymorphism (SNP) markers from bacterial artificial chromosome (BAC) end sequences onto 28 linkage groups using a recombining male backcross population, yielding an average inter-SNP distance of 0.81 cM (about 270 kilobases). We constructed 6,221 contigs by fingerprinting clones from three BAC libraries digested with different restriction enzymes, and assigned a total of 724 single copy genes to them by BLAST (basic local alignment search tool) search of the BAC end sequences and high-density BAC filter hybridization using expressed sequence tags as probes. We assigned 964 additional expressed sequence tags to linkage groups by restriction fragment length polymorphism analysis of a nonrecombining female backcross population. Altogether, 361.1 megabases of BAC contigs and singletons were integrated with a map containing 1,688 independent genes. A test of synteny using Oxford grid analysis with more than 500 silkworm genes revealed six versus 20 silkworm linkage groups containing eight or more orthologs of Apis versus Tribolium, respectively.ConclusionThe integrated map contains approximately 10% of predicted silkworm genes and has an estimated 76% genome coverage by BACs. This provides a new resource for improved assembly of whole-genome shotgun data, gene annotation and positional cloning, and will serve as a platform for comparative genomics and gene discovery in Lepidoptera and other insects.


BMC Plant Biology | 2011

Field transcriptome revealed critical developmental and physiological transitions involved in the expression of growth potential in japonica rice

Yutaka Sato; Baltazar A. Antonio; Nobukazu Namiki; Ritsuko Motoyama; Kazuhiko Sugimoto; Hinako Takehisa; Hiroshi Minami; Kaori Kamatsuki; Makoto Kusaba; Hirohiko Hirochika; Yoshiaki Nagamura

BackgroundPlant growth depends on synergistic interactions between internal and external signals, and yield potential of crops is a manifestation of how these complex factors interact, particularly at critical stages of development. As an initial step towards developing a systems-level understanding of the biological processes underlying the expression of overall agronomic potential in cereal crops, a high-resolution transcriptome analysis of rice was conducted throughout life cycle of rice grown under natural field conditions.ResultsA wide range of gene expression profiles based on 48 organs and tissues at various developmental stages identified 731 organ/tissue specific genes as well as 215 growth stage-specific expressed genes universally in leaf blade, leaf sheath, and root. Continuous transcriptome profiling of leaf from transplanting until harvesting further elucidated the growth-stage specificity of gene expression and uncovered two major drastic changes in the leaf transcriptional program. The first major change occurred before the panicle differentiation, accompanied by the expression of RFT1, a putative florigen gene in long day conditions, and the downregulation of the precursors of two microRNAs. This transcriptome change was also associated with physiological alterations including phosphate-homeostasis state as evident from the behavior of several key regulators such as miR399. The second major transcriptome change occurred just after flowering, and based on analysis of sterile mutant lines, we further revealed that the formation of strong sink, i.e., a developing grain, is not the major cause but is rather a promoter of this change.ConclusionsOur study provides not only the genetic basis for functional genomics in rice but also new insight into understanding the critical physiological processes involved in flowering and seed development, that could lead to novel strategies for optimizing crop productivity.


Plant Journal | 2012

Genome‐wide transcriptome dissection of the rice root system: implications for developmental and physiological functions

Hinako Takehisa; Yutaka Sato; Motoko Igarashi; Tomomi Abiko; Baltazar A. Antonio; Kaori Kamatsuki; Hiroshi Minami; Nobukazu Namiki; Yoshiaki Inukai; Mikio Nakazono; Yoshiaki Nagamura

The root system is a crucial determinant of plant growth potential because of its important functions, e.g. uptake of water and nutrients, structural support and interaction with symbiotic organisms. Elucidating the molecular mechanism of root development and functions is therefore necessary for improving plant productivity, particularly for crop plants, including rice (Oryza sativa). As an initial step towards developing a comprehensive understanding of the root system, we performed a large-scale transcriptome analysis of the rice root via a combined laser microdissection and microarray approach. The crown root was divided into eight developmental stages along the longitudinal axis and three radial tissue types at two different developmental stages, namely: epidermis, exodermis and sclerenchyma; cortex; and endodermis, pericycle and stele. We analyzed a total of 38 microarray data and identified 22,297 genes corresponding to 17,010 loci that showed sufficient signal intensity as well as developmental- and tissue type-specific transcriptome signatures. Moreover, we clarified gene networks associated with root cap function and lateral root formation, and further revealed antagonistic and synergistic interactions of phytohormones such as auxin, cytokinin, brassinosteroids and ethylene, based on the expression pattern of genes related to phytohormone biosynthesis and signaling. Expression profiling of transporter genes defined not only major sites for uptake and transport of water and nutrients, but also distinct signatures of the radial transport system from the rhizosphere to the xylem vessel for each nutrient. All data can be accessed from our gene expression profile database, RiceXPro (http://ricexpro.dna.affrc.go.jp), thereby providing useful information for understanding the molecular mechanisms involved in root system development of crop plants.


BMC Plant Biology | 2012

Global transcriptome analysis reveals distinct expression among duplicated genes during sorghum-Bipolaris sorghicola interaction

Hiroshi Mizuno; Hiroyuki Kawahigashi; Yoshihiro Kawahara; Hiroyuki Kanamori; Jun Ogata; Hiroshi Minami; Takeshi Itoh; Takashi Matsumoto

BackgroundSorghum (Sorghum bicolor L. Moench) is a rich source of natural phytochemicals. We performed massive parallel sequencing of mRNA to identify differentially expressed genes after sorghum BTx623 had been infected with Bipolaris sorghicola, a necrotrophic fungus causing a sorghum disease called target leaf spot.ResultSeventy-six-base-pair reads from mRNAs of mock- or pathogen-infected leaves were sequenced. Unannotated transcripts were predicted on the basis of the piling-up of mapped short reads. Differentially expressed genes were identified statistically; particular genes in tandemly duplicated putative paralogs were highly upregulated. Pathogen infection activated the glyoxylate shunt in the TCA cycle; this changes the role of the TCA cycle from energy production to synthesis of cell components. The secondary metabolic pathways of phytoalexin synthesis and of sulfur-dependent detoxification were activated by upregulation of the genes encoding amino acid metabolizing enzymes located at the branch point between primary and secondary metabolism. Coordinated gene expression could guide the metabolic pathway for accumulation of the sorghum-specific phytochemicals 3-deoxyanthocyanidin and dhurrin. Key enzymes for synthesizing these sorghum-specific phytochemicals were not found in the corresponding region of the rice genome.ConclusionPathogen infection dramatically changed the expression of particular paralogs that putatively encode enzymes involved in the sorghum-specific metabolic network.


Plant Molecular Biology | 2013

Diversity in the complexity of phosphate starvation transcriptomes among rice cultivars based on RNA-Seq profiles

Youko Oono; Yoshihiro Kawahara; Takayuki Yazawa; Hiroyuki Kanamori; Masato Kuramata; Harumi Yamagata; Satomi Hosokawa; Hiroshi Minami; Satoru Ishikawa; Jianzhong Wu; Baltazar A. Antonio; Hirokazu Handa; Takeshi Itoh; Takashi Matsumoto

Rice has developed several morphological and physiological strategies to adapt to phosphate starvation in the soil. In order to elucidate the molecular basis of response to phosphate starvation, we performed mRNA sequencing of 4 rice cultivars with variation in growth response to Pi starvation as indicated by the shoot/root dry weight ratio. Approximately 254 million sequence reads were mapped onto the IRGSP-1.0 reference rice genome sequence and an average of about 5,000 transcripts from each cultivar were found to be responsive under phosphate starvation. Comparative analysis of the RNA-Seq profiles of the 4 cultivars revealed similarities as well as distinct differences in expression of these responsive transcripts. We elucidated a set of core responsive transcripts including annotated and unannotated transcripts commonly expressed in the 4 cultivars but with different levels of expression. De novo assembly of unmapped reads to the Nipponbare genome generated a set of sequence contigs representing potential new transcripts that may be involved in tolerance to phosphate starvation. This study can be used for identification of genes and gene networks associated with environmental stress and the development of novel strategies for improving tolerance to phosphate starvation in rice and other cereal crops.


Plant Journal | 2011

Distinct evolutionary patterns of Oryza glaberrima deciphered by genome sequencing and comparative analysis.

Hiroaki Sakai; Hiroshi Ikawa; Tsuyoshi Tanaka; Hisataka Numa; Hiroshi Minami; Masaki Fujisawa; Michie Shibata; Kanako Kurita; Ari Kikuta; Masao Hamada; Hiroyuki Kanamori; Nobukazu Namiki; Jianzhong Wu; Takeshi Itoh; Takashi Matsumoto; Takuji Sasaki

Here we present the genomic sequence of the African cultivated rice, Oryza glaberrima, and compare these data with the genome sequence of Asian cultivated rice, Oryza sativa. We obtained gene-enriched sequences of O. glaberrima that correspond to about 25% of the gene regions of the O. sativa (japonica) genome by methylation filtration and subtractive hybridization of repetitive sequences. While patterns of amino acid changes did not differ between the two species in terms of the biochemical properties, genes of O. glaberrima generally showed a larger synonymous–nonsynonymous substitution ratio, suggesting that O. glaberrima has undergone a genome-wide relaxation of purifying selection. We further investigated nucleotide substitutions around splice sites and found that eight genes of O. sativa experienced changes at splice sites after the divergence from O. glaberrima. These changes produced novel introns that partially truncated functional domains, suggesting that these newly emerged introns affect gene function. We also identified 2451 simple sequence repeats (SSRs) from the genomes of O. glaberrima and O. sativa. Although tri-nucleotide repeats were most common among the SSRs and were overrepresented in the protein-coding sequences, we found that selection against indels of tri-nucleotide repeats was relatively weak in both African and Asian rice. Our genome-wide sequencing of O. glaberrima and in-depth analyses provide rice researchers not only with useful genomic resources for future breeding but also with new insights into the genomic evolution of the African and Asian rice species.


Plant and Cell Physiology | 2011

Rice TOGO Browser: A Platform to Retrieve Integrated Information on Rice Functional and Applied Genomics

Yoshiaki Nagamura; Baltazar A. Antonio; Yutaka Sato; Akio Miyao; Nobukazu Namiki; Jun-ichi Yonemaru; Hiroshi Minami; Kaori Kamatsuki; Kan Shimura; Yuji Shimizu; Hirohiko Hirochika

The Rice TOGO Browser is an online public resource designed to facilitate integration and visualization of mapping data of bacterial artificial chromosome (BAC)/P1-derived artificial chromosome (PAC) clones, genes, restriction fragment length polymorphism (RFLP)/simple sequence repeat (SSR) markers and phenotype data represented as quantitative trait loci (QTLs) onto the genome sequence, and to provide a platform for more efficient utilization of genome information from the point of view of applied genomics as well as functional genomics. Three search options, namely keyword search, region search and trait search, generate various types of data in a user-friendly interface with three distinct viewers, a chromosome viewer, an integrated map viewer and a sequence viewer, thereby providing the opportunity to view the position of genes and/or QTLs at the chromosomal level and to retrieve any sequence information in a user-defined genome region. Furthermore, the gene list, marker list and genome sequence in a specified region delineated by RFLP/SSR markers and any sequences designed as primers can be viewed and downloaded to support forward genetics approaches. An additional feature of this database is the graphical viewer for BLAST search to reveal information not only for regions with significant sequence similarity but also for regions adjacent to those with similarity but with no hits between sequences. An easy to use and intuitive user interface can help a wide range of users in retrieving integrated mapping information including agronomically important traits on the rice genome sequence. The database can be accessed at http://agri-trait.dna.affrc.go.jp/.

Collaboration


Dive into the Hiroshi Minami's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge