Michihiko Shimomura
Mitsubishi
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michihiko Shimomura.
BMC Genomics | 2009
Michihiko Shimomura; Hiroshi Minami; Yoshitaka Suetsugu; Hajime Ohyanagi; Chikatada Satoh; Baltazar A. Antonio; Yoshiaki Nagamura; Keiko Kadono-Okuda; Hideyuki Kajiwara; Hideki Sezutsu; Javaregowda Nagaraju; Marian R. Goldsmith; Qingyou Xia; Kimiko Yamamoto; Kazuei Mita
BackgroundThe silkworm, Bombyx mori, is one of the most economically important insects in many developing countries owing to its large-scale cultivation for silk production. With the development of genomic and biotechnological tools, B. mori has also become an important bioreactor for production of various recombinant proteins of biomedical interest. In 2004, two genome sequencing projects for B. mori were reported independently by Chinese and Japanese teams; however, the datasets were insufficient for building long genomic scaffolds which are essential for unambiguous annotation of the genome. Now, both the datasets have been merged and assembled through a joint collaboration between the two groups.DescriptionIntegration of the two data sets of silkworm whole-genome-shotgun sequencing by the Japanese and Chinese groups together with newly obtained fosmid- and BAC-end sequences produced the best continuity (~3.7 Mb in N50 scaffold size) among the sequenced insect genomes and provided a high degree of nucleotide coverage (88%) of all 28 chromosomes. In addition, a physical map of BAC contigs constructed by fingerprinting BAC clones and a SNP linkage map constructed using BAC-end sequences were available. In parallel, proteomic data from two-dimensional polyacrylamide gel electrophoresis in various tissues and developmental stages were compiled into a silkworm proteome database. Finally, a Bombyx trap database was constructed for documenting insertion positions and expression data of transposon insertion lines.ConclusionFor efficient usage of genome information for functional studies, genomic sequences, physical and genetic map information and EST data were compiled into KAIKObase, an integrated silkworm genome database which consists of 4 map viewers, a gene viewer, and sequence, keyword and position search systems to display results and data at the level of nucleotide sequence, gene, scaffold and chromosome. Integration of the silkworm proteome database and the Bombyx trap database with KAIKObase led to a high-grade, user-friendly, and comprehensive silkworm genome database which is now available from URL: http://sgp.dna.affrc.go.jp/KAIKObase/.
Genome Biology | 2008
Kimiko Yamamoto; Junko Nohata; Keiko Kadono-Okuda; Junko Narukawa; Motoe Sasanuma; Shun-ichi Sasanuma; Hiroshi Minami; Michihiko Shimomura; Yoshitaka Suetsugu; Yutaka Banno; Kazutoyo Osoegawa; Pieter J. de Jong; Marian R. Goldsmith; Kazuei Mita
BackgroundIn 2004, draft sequences of the model lepidopteran Bombyx mori were reported using whole-genome shotgun sequencing. Because of relatively shallow genome coverage, the silkworm genome remains fragmented, hampering annotation and comparative genome studies. For a more complete genome analysis, we developed extended scaffolds combining physical maps with improved genetic maps.ResultsWe mapped 1,755 single nucleotide polymorphism (SNP) markers from bacterial artificial chromosome (BAC) end sequences onto 28 linkage groups using a recombining male backcross population, yielding an average inter-SNP distance of 0.81 cM (about 270 kilobases). We constructed 6,221 contigs by fingerprinting clones from three BAC libraries digested with different restriction enzymes, and assigned a total of 724 single copy genes to them by BLAST (basic local alignment search tool) search of the BAC end sequences and high-density BAC filter hybridization using expressed sequence tags as probes. We assigned 964 additional expressed sequence tags to linkage groups by restriction fragment length polymorphism analysis of a nonrecombining female backcross population. Altogether, 361.1 megabases of BAC contigs and singletons were integrated with a map containing 1,688 independent genes. A test of synteny using Oxford grid analysis with more than 500 silkworm genes revealed six versus 20 silkworm linkage groups containing eight or more orthologs of Apis versus Tribolium, respectively.ConclusionThe integrated map contains approximately 10% of predicted silkworm genes and has an estimated 76% genome coverage by BACs. This provides a new resource for improved assembly of whole-genome shotgun data, gene annotation and positional cloning, and will serve as a platform for comparative genomics and gene discovery in Lepidoptera and other insects.
BMC Genomics | 2008
Hiroaki Noda; Sawako Kawai; Yoko Koizumi; Kageaki Matsui; Qiang Zhang; Shigetoyo Furukawa; Michihiko Shimomura; Kazuei Mita
BackgroundThe brown planthopper (BPH), Nilaparvata lugens (Hemiptera, Delphacidae), is a serious insect pests of rice plants. Major means of BPH control are application of agricultural chemicals and cultivation of BPH resistant rice varieties. Nevertheless, BPH strains that are resistant to agricultural chemicals have developed, and BPH strains have appeared that are virulent against the resistant rice varieties. Expressed sequence tag (EST) analysis and related applications are useful to elucidate the mechanisms of resistance and virulence and to reveal physiological aspects of this non-model insect, with its poorly understood genetic background.ResultsMore than 37,000 high-quality ESTs, excluding sequences of mitochondrial genome, microbial genomes, and rDNA, have been produced from 18 libraries of various BPH tissues and stages. About 10,200 clusters have been made from whole EST sequences, with average EST size of 627 bp. Among the top ten most abundantly expressed genes, three are unique and show no homology in BLAST searches. The actin gene was highly expressed in BPH, especially in the thorax. Tissue-specifically expressed genes were extracted based on the expression frequency among the libraries. An EST database is available at our web site.ConclusionThe EST library will provide useful information for transcriptional analyses, proteomic analyses, and gene functional analyses of BPH. Moreover, specific genes for hemimetabolous insects will be identified. The microarray fabricated based on the EST information will be useful for finding genes related to agricultural and biological problems related to this pest.
G3: Genes, Genomes, Genetics | 2013
Yoshitaka Suetsugu; Ryo Futahashi; Hiroyuki Kanamori; Keiko Kadono-Okuda; Shun-ichi Sasanuma; Junko Narukawa; Masahiro Ajimura; Akiya Jouraku; Nobukazu Namiki; Michihiko Shimomura; Hideki Sezutsu; Mizuko Osanai-Futahashi; Masataka G. Suzuki; Takaaki Daimon; Tetsuro Shinoda; Kiyoko Taniai; Kiyoshi Asaoka; Ryusuke Niwa; Shinpei Kawaoka; Susumu Katsuma; Toshiki Tamura; Hiroaki Noda; Masahiro Kasahara; Sumio Sugano; Yutaka Suzuki; Haruhiko Fujiwara; Hiroshi Kataoka; Kallare P. Arunkumar; Archana Tomar; Javaregowda Nagaraju
The establishment of a complete genomic sequence of silkworm, the model species of Lepidoptera, laid a foundation for its functional genomics. A more complete annotation of the genome will benefit functional and comparative studies and accelerate extensive industrial applications for this insect. To realize these goals, we embarked upon a large-scale full-length cDNA collection from 21 full-length cDNA libraries derived from 14 tissues of the domesticated silkworm and performed full sequencing by primer walking for 11,104 full-length cDNAs. The large average intron size was 1904 bp, resulting from a high accumulation of transposons. Using gene models predicted by GLEAN and published mRNAs, we identified 16,823 gene loci on the silkworm genome assembly. Orthology analysis of 153 species, including 11 insects, revealed that among three Lepidoptera including Monarch and Heliconius butterflies, the 403 largest silkworm-specific genes were composed mainly of protective immunity, hormone-related, and characteristic structural proteins. Analysis of testis-/ovary-specific genes revealed distinctive features of sexual dimorphism, including depletion of ovary-specific genes on the Z chromosome in contrast to an enrichment of testis-specific genes. More than 40% of genes expressed in specific tissues mapped in tissue-specific chromosomal clusters. The newly obtained FL-cDNA sequences enabled us to annotate the genome of this lepidopteran model insect more accurately, enhancing genomic and functional studies of Lepidoptera and comparative analyses with other insect orders, and yielding new insights into the evolution and organization of lepidopteran-specific genes.
Journal of Biological Chemistry | 2010
Richard Cornette; Yasushi Kanamori; Masahiko Watanabe; Yuichi Nakahara; Oleg Gusev; Kanako Mitsumasu; Keiko Kadono-Okuda; Michihiko Shimomura; Kazuei Mita; Takahiro Kikawada; Takashi Okuda
Some organisms are able to survive the loss of almost all their body water content, entering a latent state known as anhydrobiosis. The sleeping chironomid (Polypedilum vanderplanki) lives in the semi-arid regions of Africa, and its larvae can survive desiccation in an anhydrobiotic form during the dry season. To unveil the molecular mechanisms of this resistance to desiccation, an anhydrobiosis-related Expressed Sequence Tag (EST) database was obtained from the sequences of three cDNA libraries constructed from P. vanderplanki larvae after 0, 12, and 36 h of desiccation. The database contained 15,056 ESTs distributed into 4,807 UniGene clusters. ESTs were classified according to gene ontology categories, and putative expression patterns were deduced for all clusters on the basis of the number of clones in each library; expression patterns were confirmed by real-time PCR for selected genes. Among up-regulated genes, antioxidants, late embryogenesis abundant (LEA) proteins, and heat shock proteins (Hsps) were identified as important groups for anhydrobiosis. Genes related to trehalose metabolism and various transporters were also strongly induced by desiccation. Those results suggest that the oxidative stress response plays a central role in successful anhydrobiosis. Similarly, protein denaturation and aggregation may be prevented by marked up-regulation of Hsps and the anhydrobiosis-specific LEA proteins. A third major feature is the predicted increase in trehalose synthesis and in the expression of various transporter proteins allowing the distribution of trehalose and other solutes to all tissues.
Scientific Reports | 2015
Yuki Mitsui; Michihiko Shimomura; Kenji Komatsu; Nobukazu Namiki; Mari Shibata-Hatta; Misaki Imai; Yuichi Katayose; Yoshiyuki Mukai; Hiroyuki Kanamori; Kanako Kurita; Tsutomu Kagami; Akihito Wakatsuki; Hajime Ohyanagi; Hiroshi Ikawa; Nobuhiro Minaka; Kunihiro Nakagawa; Yu Shiwa; Takuji Sasaki
Understanding the processes that regulate plant sink formation and development at the molecular level will contribute to the areas of crop breeding, food production and plant evolutionary studies. We report the annotation and analysis of the draft genome sequence of the radish Raphanus sativus var. hortensis (long and thick root radish) and transcriptome analysis during root development. Based on the hybrid assembly approach of next-generation sequencing, a total of 383 Mb (N50 scaffold: 138.17 kb) of sequences of the radish genome was constructed containing 54,357 genes. Syntenic and phylogenetic analyses indicated that divergence between Raphanus and Brassica coincide with the time of whole genome triplication (WGT), suggesting that WGT triggered diversification of Brassiceae crop plants. Further transcriptome analysis showed that the gene functions and pathways related to carbohydrate metabolism were prominently activated in thickening roots, particularly in cell proliferating tissues. Notably, the expression levels of sucrose synthase 1 (SUS1) were correlated with root thickening rates. We also identified the genes involved in pungency synthesis and their transcription factors.
BMC Genomics | 2007
Yoshitaka Suetsugu; Hiroshi Minami; Michihiko Shimomura; Shun ichi Sasanuma; Junko Narukawa; Kazuei Mita; Kimiko Yamamoto
BackgroundWe performed large-scale bacterial artificial chromosome (BAC) end-sequencing of two BAC libraries (an Eco RI- and a Bam HI-digested library) and conducted an in silico analysis to characterize the obtained sequence data, to make them a useful resource for genomic research on the silkworm (Bombyx mori).ResultsMore than 94000 BAC end sequences (BESs), comprising more than 55 Mbp and covering about 10.4% of the silkworm genome, were sequenced. Repeat-sequence analysis with known repeat sequences indicated that the long interspersed nuclear elements (LINEs) were abundant in Bam HI BESs, whereas DNA-type elements were abundant in Eco RI BESs. Repeat-sequence analysis revealed that the abundance of LINEs might be due to a GC bias of the restriction sites and that the GC content of silkworm LINEs was higher than that of mammalian LINEs. In a BLAST-based sequence analysis of the BESs against two available whole-genome shotgun sequence data sets, more than 70% of the BESs had a BLAST hit with an identity of ≥ 99%. About 14% of Eco RI BESs and about 8% of Bam HI BESs were paired-end clones with unique sequences at both ends. Cluster analysis of the BESs clarified the proportion of BESs containing protein-coding regions.ConclusionAs a result of this characterization, the identified BESs will be a valuable resource for genomic research on Bombyx mori, for example, as a base for construction of a BAC-based physical map. The use of multiple complementary BAC libraries constructed with different restriction enzymes also makes the BESs a more valuable genomic resource. The GenBank accession numbers of the obtained end sequences are DE283657–DE378560.
Breeding Science | 2012
Yuichi Katayose; Hiroyuki Kanamori; Michihiko Shimomura; Hajime Ohyanagi; Hiroshi Ikawa; Hiroshi Minami; Michie Shibata; Tomoko Ito; Kanako Kurita; Kazue Ito; Yasutaka Tsubokura; Akito Kaga; Jianzhong Wu; Takashi Matsumoto; Kyuya Harada; Takuji Sasaki
Soybean [Glycine max (L) Merrill] is one of the most important leguminous crops and ranks fourth after to rice, wheat and maize in terms of world crop production. Soybean contains abundant protein and oil, which makes it a major source of nutritious food, livestock feed and industrial products. In Japan, soybean is also an important source of traditional staples such as tofu, natto, miso and soy sauce. The soybean genome was determined in 2010. With its enormous size, physical mapping and genome sequencing are the most effective approaches towards understanding the structure and function of the soybean genome. We constructed bacterial artificial chromosome (BAC) libraries from the Japanese soybean cultivar, Enrei. The end-sequences of approximately 100,000 BAC clones were analyzed and used for construction of a BAC-based physical map of the genome. BLAST analysis between Enrei BAC-end sequences and the Williams82 genome was carried out to increase the saturation of the map. This physical map will be used to characterize the genome structure of Japanese soybean cultivars, to develop methods for the isolation of agronomically important genes and to facilitate comparative soybean genome research. The current status of physical mapping of the soybean genome and construction of database are presented.
DNA Research | 2004
Kazuei Mita; Masahiro Kasahara; Shin Sasaki; Yukinobu Nagayasu; Tomoyuki Yamada; Hiroyuki Kanamori; Nobukazu Namiki; Masanari Kitagawa; Hidetoshi Yamashita; Yuji Yasukochi; Keiko Kadono-Okuda; Kimiko Yamamoto; Masahiro Ajimura; Gopalapillai Ravikumar; Michihiko Shimomura; Yoshiaki Nagamura; Tadasu Shin-I; Hiroaki Abe; Toru Shimada; Shinichi Morishita; Takuji Sasaki
Insect Biochemistry and Molecular Biology | 2011
Corinne Royer; Jérôme Briolay; Annie Garel; Patrick Brouilly; Shun-ichi Sasanuma; Motoe Sasanuma; Michihiko Shimomura; Celine Keime; Olivier Gandrillon; Yongping Huang; Gérard Chavancy; Kazuei Mita; Pierre Couble