Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroshi Naraoka is active.

Publication


Featured researches published by Hiroshi Naraoka.


Science | 2011

Three-Dimensional Structure of Hayabusa Samples: Origin and Evolution of Itokawa Regolith

Akira Tsuchiyama; Masayuki Uesugi; Takashi Matsushima; Tatsuhiro Michikami; Toshihiko Kadono; Tomoki Nakamura; Kentaro Uesugi; Tsukasa Nakano; Scott A. Sandford; Ryo Noguchi; T. Matsumoto; Junya Matsuno; Takashi Nagano; Y. Imai; Akihisa Takeuchi; Yoshio Suzuki; Toshihiro Ogami; Jun Katagiri; Mitsuru Ebihara; Trevor R. Ireland; Fumio Kitajima; Keisuke Nagao; Hiroshi Naraoka; Takaaki Noguchi; Ryuji Okazaki; Hisayoshi Yurimoto; Michael E. Zolensky; T. Mukai; Masanao Abe; Toru Yada

Laboratory analysis of samples returned from an asteroid establishes a direct link between asteroids and meteorites and provides clues to the complex history of the asteroid and its surface. Regolith particles on the asteroid Itokawa were recovered by the Hayabusa mission. Their three-dimensional (3D) structure and other properties, revealed by x-ray microtomography, provide information on regolith formation. Modal abundances of minerals, bulk density (3.4 grams per cubic centimeter), and the 3D textures indicate that the particles represent a mixture of equilibrated and less-equilibrated LL chondrite materials. Evidence for melting was not seen on any of the particles. Some particles have rounded edges. Overall, the particles’ size and shape are different from those seen in particles from the lunar regolith. These features suggest that meteoroid impacts on the asteroid surface primarily form much of the regolith particle, and that seismic-induced grain motion in the smooth terrain abrades them over time.


Science | 2011

Oxygen Isotopic Compositions of Asteroidal Materials Returned from Itokawa by the Hayabusa Mission

Hisayoshi Yurimoto; Kenichi Abe; Masanao Abe; Mitsuru Ebihara; Akio Fujimura; Minako Hashiguchi; Ko Hashizume; Trevor R. Ireland; Shoichi Itoh; Juri Katayama; Chizu Kato; Junichiro Kawaguchi; Noriyuki Kawasaki; Fumio Kitajima; Sachio Kobayashi; Tatsuji Meike; T. Mukai; Keisuke Nagao; Tomoki Nakamura; Hiroshi Naraoka; Takaaki Noguchi; Ryuji Okazaki; Changkun Park; Naoya Sakamoto; Yusuke Seto; Masashi Takei; Akira Tsuchiyama; Masayuki Uesugi; Shigeyuki Wakaki; Toru Yada

Laboratory analysis of samples returned from an asteroid establishes a direct link between asteroids and meteorites and provides clues to the complex history of the asteroid and its surface. Meteorite studies suggest that each solar system object has a unique oxygen isotopic composition. Chondrites, the most primitive of meteorites, have been believed to be derived from asteroids, but oxygen isotopic compositions of asteroids themselves have not been established. We measured, using secondary ion mass spectrometry, oxygen isotopic compositions of rock particles from asteroid 25143 Itokawa returned by the Hayabusa spacecraft. Compositions of the particles are depleted in 16O relative to terrestrial materials and indicate that Itokawa, an S-type asteroid, is one of the sources of the LL or L group of equilibrated ordinary chondrites. This is a direct oxygen-isotope link between chondrites and their parent asteroid.


Science | 2011

Irradiation History of Itokawa Regolith Material Deduced from Noble Gases in the Hayabusa Samples

Keisuke Nagao; Ryuji Okazaki; Tomoki Nakamura; Yayoi N. Miura; Takahito Osawa; Ken Ichi Bajo; Shintaro Matsuda; Mitsuru Ebihara; Trevor R. Ireland; Fumio Kitajima; Hiroshi Naraoka; Takaaki Noguchi; Akira Tsuchiyama; Hisayoshi Yurimoto; Michael E. Zolensky; Masayuki Uesugi; Kei Shirai; Masanao Abe; Toru Yada; Yukihiro Ishibashi; Akio Fujimura; T. Mukai; Munetaka Ueno; Tatsuaki Okada; Makoto Yoshikawa; Junichiro Kawaguchi

Laboratory analysis of samples returned from an asteroid establishes a direct link between asteroids and meteorites and provides clues to the complex history of the asteroid and its surface. Noble gas isotopes were measured in three rocky grains from asteroid Itokawa to elucidate a history of irradiation from cosmic rays and solar wind on its surface. Large amounts of solar helium (He), neon (Ne), and argon (Ar) trapped in various depths in the grains were observed, which can be explained by multiple implantations of solar wind particles into the grains, combined with preferential He loss caused by frictional wear of space-weathered rims on the grains. Short residence time of less than 8 million years was implied for the grains by an estimate on cosmic-ray–produced 21Ne. Our results suggest that Itokawa is continuously losing its surface materials into space at a rate of tens of centimeters per million years. The lifetime of Itokawa should be much shorter than the age of our solar system.


Science | 2011

Neutron Activation Analysis of a Particle Returned from Asteroid Itokawa

Mitsuru Ebihara; S. Sekimoto; Naoki Shirai; Yasunori Hamajima; M. Yamamoto; K. Kumagai; Y. Oura; Trevor R. Ireland; Fumio Kitajima; Keisuke Nagao; Tomoki Nakamura; Hiroshi Naraoka; Takaaki Noguchi; Ryuji Okazaki; Akira Tsuchiyama; Masayuki Uesugi; Hisayoshi Yurimoto; Michael E. Zolensky; Masanao Abe; Akio Fujimura; T. Mukai; Y. Yada

Laboratory analysis of samples returned from an asteroid establishes a direct link between asteroids and meteorites and provides clues to the complex history of the asteroid and its surface. A single grain (~3 micrograms) returned by the Hayabusa spacecraft was analyzed by neutron activation analysis. This grain is mainly composed of olivine with minor amounts of plagioclase, troilite, and metal. Our results establish that the Itokawa sample has similar chemical characteristics (iron/scandium and nickel/cobalt ratios) to chondrites, confirming that this grain is extraterrestrial in origin and has primitive chemical compositions. Estimated iridium/nickel and iridium/cobalt ratios for metal in the Itokawa samples are about five times lower than CI carbonaceous chondrite values. A similar depletion of iridium was observed in chondrule metals of ordinary chondrites. These metals must have condensed from the nebular where refractory siderophile elements already condensed and were segregated.


Earth, Planets and Space | 2014

X-ray absorption near edge structure spectroscopic study of Hayabusa category 3 carbonaceous particles

Hikaru Yabuta; Masayuki Uesugi; Hiroshi Naraoka; Motoo Ito; A. L. David Kilcoyne; Scott A. Sandford; Fumio Kitajima; Hajime Mita; Yoshinori Takano; Toru Yada; Yuzuru Karouji; Yukihiro Ishibashi; Tatsuaki Okada; Masanao Abe

Analyses with a scanning transmission x-ray microscope (STXM) using x-ray absorption near edge structure (XANES) spectroscopy were applied for the molecular characterization of two kinds of carbonaceous particles of unknown origin, termed category 3, which were collected from the Hayabusa spacecraft sample catcher. Carbon-XANES spectra of the category 3 particles displayed typical spectral patterns of heterogeneous organic macromolecules; peaks corresponding to aromatic/olefinic carbon, heterocyclic nitrogen and/or nitrile, and carboxyl carbon were all detected. Nitrogen-XANES spectra of the particles showed the presence of N-functional groups such as imine, nitrile, aromatic nitrogen, amide, pyrrole, and amine. An oxygen-XANES spectrum of one of the particles showed a ketone group. Differences in carbon- and nitrogen-XANES spectra of the category 3 particles before and after transmission electron microscopic (TEM) observations were observed, which demonstrates that the carbonaceous materials are electron beam sensitive. Calcium-XANES spectroscopy and elemental contrast mapping identified a calcium carbonate grain from one of the category 3 particles. No fluorine-containing molecular species were detected in fluorine-XANES spectra of the particles. The organic macromolecular features of the category 3 particles were distinct from commercial and/or biological ‘fresh (non-degraded)’ polymers, but the category 3 molecular features could possibly reflect degradation of contaminant polymer materials or polymer materials used on the Hayabusa spacecraft. However, an extraterrestrial origin for these materials cannot currently be ruled out.


Earth, Planets and Space | 2014

Sequential Analysis of Carbonaceous Materials in Hayabusa-Returned Samples for the Determination of Their Origin

Masayuki Uesugi; Hiroshi Naraoka; Motoo Ito; Hikaru Yabuta; Fumio Kitajima; Yoshinori Takano; Hajime Mita; Ichiro Ohnishi; Yoko Kebukawa; Toru Yada; Yuzuru Karouji; Yukihiro Ishibashi; T. Okada; Masanao Abe

Preliminary results of the analyses of five carbonaceous materials (particle size of approximately 50xa0μm) from the Hayabusa spacecraft sample catcher, including their texture, chemistry, and chemical/isotopic compositions, are summarized. The carbonaceous particles underwent sequential analysis using a series of microanalytical instruments located at several research institutes and universities. Collected particles were initially classified into four categories: two categories containing extraterrestrial silicate particles, one category containing metal and quartz particles consistent with contamination from the sample catcher or sample manipulation tools, and a final category containing carbonaceous particles. Analysis of this final category was the main focus of this study. Through examination of the carbonaceous materials, the appropriate analytical processes for sample transportation and handling were optimized to minimize sample damage and terrestrial contamination. Particles were investigated by transmission electron microscopy/scanning transmission electron microscopy, and Ca-carbonate inclusions were found in one particle. In a different particle, a heterogeneous distribution of silicon in a uniform C, N, and O matrix was found. Though further analysis is required for a strict determination of particle origin, the differences in the microstructure and elemental distribution of the carbonaceous particles suggest multiple origins.


Earth, Planets and Space | 2014

H, C, and N isotopic compositions of Hayabusa category 3 organic samples

Motoo Ito; Masayuki Uesugi; Hiroshi Naraoka; Hikaru Yabuta; Fumio Kitajima; Hajime Mita; Yoshinori Takano; Yuzuru Karouji; Toru Yada; Yukihiro Ishibashi; Tatsuaki Okada; Masanao Abe

Since isotopic ratios of H, C, and N are sensitive indicators for determining extraterrestrial organics, we have measured these isotopes of Hayabusa category 3 organic samples of RB-QD04-0047-02, RA-QD02-0120, and RB-QD04-0001 with ion imaging using a NanoSIMS ion microprobe. All samples have H, C, and N isotopic compositions that are terrestrial within errors (approximately ±50‰ for H, approximately ±9‰ for C, and approximately ±2‰ for N). None of these samples contain micrometer-sized hot spots with anomalous H, C, and N isotopic compositions, unlike previous isotope data for extraterrestrial organic materials, i.e., insoluble organic matters (IOMs) and nano-globules in chondrites, interplanetary dust particles (IDPs), and cometary dust particles. We, therefore, cannot conclude whether these Hayabusa category 3 samples are terrestrial contaminants or extraterrestrial materials because of the H, C, and N isotopic data. A coordinated study using microanalysis techniques including Fourier transform infrared spectrometry (FT-IR), time-of-flight secondary ion mass spectrometry (ToF-SIMS), NanoSIMS ion microprobe, Raman spectroscopy, X-ray absorption near edge spectroscopy (XANES), and transmission electron microscopy/scanning transmission electron microscopy (TEM/STEM) is required to characterize Hayabusa category 3 samples in more detail for exploring their origin and nature.


Scientific Reports | 2017

A new family of extraterrestrial amino acids in the Murchison meteorite

Toshiki Koga; Hiroshi Naraoka

The occurrence of extraterrestrial organic compounds is a key for understanding prebiotic organic synthesis in the universe. In particular, amino acids have been studied in carbonaceous meteorites for almost 50 years. Here we report ten new amino acids identified in the Murchison meteorite, including a new family of nine hydroxy amino acids. The discovery of mostly C3 and C4 structural isomers of hydroxy amino acids provides insight into the mechanisms of extraterrestrial synthesis of organic compounds. A complementary experiment suggests that these compounds could be produced from aldehydes and ammonia on the meteorite parent body. This study indicates that the meteoritic amino acids could be synthesized by mechanisms in addition to the Strecker reaction, which has been proposed to be the main synthetic pathway to produce amino acids.


Earth, Planets and Space | 2015

ToF-SIMS Analysis of Carbonaceous Particles in the Sample Catcher of the Hayabusa Spacecraft

Hiroshi Naraoka; Dan Aoki; Kazuhiko Fukushima; Masayuki Uesugi; Motoo Ito; Fumio Kitajima; Hajime Mita; Hikaru Yabuta; Yoshinori Takano; Toru Yada; Yukihiro Ishibashi; Yuzuru Karouji; T. Okada; Masanao Abe

Three carbonaceous category 3 particles (RA-QD02-0180, RB-QD04-0037-01, and RB-QD04-0047-02) returned in the sample catcher from the Hayabusa spacecraft were analyzed by time of flight-secondary ion mass spectrometry (ToF-SIMS) to establish an analytical procedure for determination of their origins. By the different analytical schemes, the three particles gave distinct elemental and molecular ions, in which the organic carbons commonly appear to be associated with nitrogen, silicon, and/or fluorine. The particles could be debris of silicon rubber and fluorinated compounds and are therefore man-made artifacts rather than natural organic matter.


Environmental Microbiology Reports | 2012

Domain-level identification and quantification of relative prokaryotic cell abundance in microbial communities by Micro-FTIR spectroscopy

Motoko Igisu; Ken Takai; Yuichiro Ueno; Manabu Nishizawa; Takuro Nunoura; Miho Hirai; Masanori Kaneko; Hiroshi Naraoka; Mie Shimojima; Koichi Hori; Satoru Nakashima; Hiroyuki Ohta; Shigenori Maruyama; Yukio Isozaki

Domain-level identification of microbial cells or cell-like structures is crucial for investigating natural microbial communities and their ecological significance. By using micro-Fourier transform infrared (micro-FTIR) spectroscopy, we established a technical basis for the domain-level diagnosis and quantification of prokaryotic cell abundance in natural microbial communities. Various prokaryotic cultures (12 species of bacteria and 10 of archaea) were examined using micro-FTIR spectroscopic analysis. The aliphatic CH3 /CH2 absorbance ratios (R3/2 ) showed domain-specific signatures, possibly reflecting distinctive cellular lipid compositions. The signatures were preserved even after chemical cell fixation (formaldehyde) and nucleic acid staining (DAPI) processes - techniques that are essential in studying microbial ecology. The micro-FTIR technique was successfully applied for quantification of the bacteria/archaea abundance ratio in an active microbial mat community in a subsurface hot aquifer stream. We conclude that the micro-FTIR R3/2 measurement is both fast and effective for domain-level diagnosis and quantification of first-order prokaryotic community structures.

Collaboration


Dive into the Hiroshi Naraoka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masanao Abe

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar

Toru Yada

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar

Masayuki Uesugi

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar

Hajime Mita

Fukuoka Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yukihiro Ishibashi

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshinori Takano

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yuzuru Karouji

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar

Akio Fujimura

Japan Aerospace Exploration Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge