Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoichi Asaoka is active.

Publication


Featured researches published by Yoichi Asaoka.


Nature | 2015

YAP is essential for tissue tension to ensure vertebrate 3D body shape

Sean R. Porazinski; Huijia Wang; Yoichi Asaoka; Martin Behrndt; Tatsuo Miyamoto; Hitoshi Morita; Shoji Hata; Takashi Sasaki; S.F. Gabriel Krens; Yumi Osada; Akihiro Momoi; Sarah Linton; Joel B. Miesfeld; Brian A. Link; Takeshi Senga; Atahualpa Castillo-Morales; Araxi O. Urrutia; Nobuyoshi Shimizu; Hideaki Nagase; Shinya Matsuura; Stefan Bagby; Hisato Kondoh; Hiroshi Nishina; Carl-Philipp Heisenberg; Makoto Furutani-Seiki

Vertebrates have a unique 3D body shape in which correct tissue and organ shape and alignment are essential for function. For example, vision requires the lens to be centred in the eye cup which must in turn be correctly positioned in the head. Tissue morphogenesis depends on force generation, force transmission through the tissue, and response of tissues and extracellular matrix to force. Although a century ago D’Arcy Thompson postulated that terrestrial animal body shapes are conditioned by gravity, there has been no animal model directly demonstrating how the aforementioned mechano-morphogenetic processes are coordinated to generate a body shape that withstands gravity. Here we report a unique medaka fish (Oryzias latipes) mutant, hirame (hir), which is sensitive to deformation by gravity. hir embryos display a markedly flattened body caused by mutation of YAP, a nuclear executor of Hippo signalling that regulates organ size. We show that actomyosin-mediated tissue tension is reduced in hir embryos, leading to tissue flattening and tissue misalignment, both of which contribute to body flattening. By analysing YAP function in 3D spheroids of human cells, we identify the Rho GTPase activating protein ARHGAP18 as an effector of YAP in controlling tissue tension. Together, these findings reveal a previously unrecognised function of YAP in regulating tissue shape and alignment required for proper 3D body shape. Understanding this morphogenetic function of YAP could facilitate the use of embryonic stem cells to generate complex organs requiring correct alignment of multiple tissues.


Journal of Biological Chemistry | 2011

Autotaxin regulates vascular development via multiple lysophosphatidic acid (LPA) receptors in zebrafish.

Hiroshi Yukiura; Kotaro Hama; Keita Nakanaga; M. Tanaka; Yoichi Asaoka; Shinichi Okudaira; Naoaki Arima; Asuka Inoue; Takafumi Hashimoto; Hiroyuki Arai; Atsuo Kawahara; Hiroshi Nishina; Junken Aoki

Background: Autotaxin is essential for vascular development in mice, but the underlying mechanism remains unknown. Results: Autotaxin had similar vascular functions in zebrafish. Furthermore, suppression of lysophosphatidic acid receptors (LPA1 and LPA4) led to similar vascular defects. Conclusion: Autotaxin exerts its vascular functions by activating LPA1 and/or LPA4 in zebrafish. Significance: LPA is a critical factor for regulating angiogenesis in vertebrates. Autotaxin (ATX) is a multifunctional ecto-type phosphodiesterase that converts lysophospholipids, such as lysophosphatidylcholine, to lysophosphatidic acid (LPA) by its lysophospholipase D activity. LPA is a lipid mediator with diverse biological functions, most of which are mediated by G protein-coupled receptors specific to LPA (LPA1–6). Recent studies on ATX knock-out mice revealed that ATX has an essential role in embryonic blood vessel formation. However, the underlying molecular mechanisms remain to be solved. A data base search revealed that ATX and LPA receptors are conserved in wide range of vertebrates from fishes to mammals. Here we analyzed zebrafish ATX (zATX) and LPA receptors both biochemically and functionally. zATX, like mammalian ATX, showed lysophospholipase D activity to produce LPA. In addition, all zebrafish LPA receptors except for LPA5a and LPA5b were found to respond to LPA. Knockdown of zATX in zebrafish embryos by injecting morpholino antisense oligonucleotides (MOs) specific to zATX caused abnormal blood vessel formation, which has not been observed in other morphant embryos or mutants with vascular defects reported previously. In ATX morphant embryos, the segmental arteries sprouted normally from the dorsal aorta but stalled in midcourse, resulting in aberrant vascular connection around the horizontal myoseptum. Similar vascular defects were not observed in embryos in which each single LPA receptor was attenuated by using MOs. Interestingly, similar vascular defects were observed when both LPA1 and LPA4 functions were attenuated by using MOs and/or a selective LPA receptor antagonist, Ki16425. These results demonstrate that the ATX-LPA-LPAR axis is a critical regulator of embryonic vascular development that is conserved in vertebrates.


Cell Cycle | 2009

Common light signaling pathways controlling DNA repair and circadian clock entrainment in zebrafish.

Jun Hirayama; Norio Miyamura; Yoshimi Uchida; Yoichi Asaoka; Reiko Honda; Kenji Sawanobori; Takeshi Todo; Takuro Yamamoto; Paolo Sassone-Corsi; Hiroshi Nishina

UV radiation causes a number of harmful events including growth delay, cell death and ultimately cancer. The reversal of such effects by concomitant exposure to visible light is a conserved mechanism which has been uncovered in many multi-cellular organisms. Here we show that light-dependent UV-tolerance is a cell autonomous phenomenon in zebrafish. In addition, we provide several lines of evidence indicating that light induction of 64PHR, a DNA repair enzyme, and the subsequent light-dependent DNA repair mediated by this enzyme are prerequisites for light-mediated UV tolerance. 64PHR is evolutionary related to and has a high degree of structural similarity to animal CRY, an essential circadian regulator. The zebrafish circadian clock is controlled by a cell-autonomous and light-dependent oscillator, where zCRY1a functions as an important mediator of light entrainment of the circadian clock. In this study, we show that light directly activates MAPK signaling cascades in zebrafish cells and we provide evidence that light-induced activation of these pathways controls the expression of two evolutionary-related genes, z64Phr and zCry1a, revealing that light-dependent DNA repair and the entrainment of circadian clock share common regulatory pathways.


Journal of Biochemistry | 2010

Diverse physiological functions of MKK4 and MKK7 during early embryogenesis

Yoichi Asaoka; Hiroshi Nishina

Mitogen-activated protein kinase kinases (MAPKKs) are important components of the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) signalling pathway. Two MAPKKs that are crucial transducers upstream of JNK signalling are MKK4 and MKK7. These two MAPKKs directly phosphorylate specific Tyr and Thr residues located in the activation loop of the JNK protein and activate this kinase in response to environmental stress, pro-inflammatory cytokines or developmental cues. Although much is known about the biochemical and structural bases of the catalytic mechanism of the MAPKKs, the regulation and physiological functions of these enzymes during early embryogenesis have remained a mystery until relatively recently. Studies employing a range of animal models have now revealed the essential roles that MAPKKs play in diverse developmental contexts, including in dorsoventral patterning, convergent extension and somitogenesis. Focusing primarily on extensive work done in mouse and zebrafish models, this review summarizes the functional properties of MKK4 and MKK7 during vertebrate and invertebrate development, and the mechanisms by which these kinases regulate multiple steps in the establishment of the body plan of an organism.


Stem Cells and Development | 2010

p38 Mitogen-Activated Protein Kinase Controls a Switch Between Cardiomyocyte and Neuronal Commitment of Murine Embryonic Stem Cells by Activating Myocyte Enhancer Factor 2C-Dependent Bone Morphogenetic Protein 2 Transcription

Jinzhan Wu; Junko Kubota; Jun Hirayama; Yoko Nagai; Sachiko Nishina; Tadashi Yokoi; Yoichi Asaoka; Jungwon Seo; Nao Shimizu; Hiroaki Kajiho; Takashi Watanabe; Noriyuki Azuma; Toshiaki Katada; Hiroshi Nishina

Many studies have shown that it is possible to use culture conditions to direct the differentiation of murine embryonic stem (ES) cells into a variety of cell types, including cardiomyocytes and neurons. However, the molecular mechanisms that control lineage commitment decisions by ES cells remain poorly understood. In this study, we investigated the role of the 3 major mitogen-activated protein kinases (MAPKs: extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38) in ES cell lineage commitment and showed that the p38 MAPK-specific inhibitor SB203580 blocks the spontaneous differentiation of ES cells into cardiomyocytes and instead induces the differentiation of these ES cells into neurons. Robust p38 MAPK activity between embryoid body culture days 3 and 4 is crucial for cardiomyogenesis of ES cells, and specific inhibition of p38 MAPK activity at this time results in ES cell differentiation into neurons rather than cardiomyocytes. At the molecular level, inhibition of p38 MAPK activity suppresses the expression of bmp-2 mRNA, whereas treatment of ES cells with bone morphogenetic protein 2 (BMP-2) inhibits the neurogenesis induced by SB203580. Further, luciferase reporter assays and chromatin immunoprecipitation experiments showed that BMP-2 expression in ES cells is regulated directly by the transcription factor myocyte enhancer factor 2C, a well-known substrate of p38 MAPK. Our findings reveal the molecular mechanism by which p38 MAPK activity in ES cells drives their commitment to differentiate preferentially into cardiomyocytes, and the conditions under which these same cells might develop into neurons.


Disease Models & Mechanisms | 2013

The expanding role of fish models in understanding non-alcoholic fatty liver disease

Yoichi Asaoka; Shuji Terai; Isao Sakaida; Hiroshi Nishina

Non-alcoholic fatty liver disease (NAFLD) is a condition in which excessive fat accumulates in the liver of an individual who has not consumed excessive alcohol. Non-alcoholic steatohepatitis (NASH), a severe form of NAFLD, can progress to hepatic cirrhosis and/or hepatocellular carcinoma (HCC). NAFLD is considered to be a hepatic manifestation of metabolic syndrome, and its incidence has risen worldwide in lockstep with the increased global prevalence of obesity. Over the last decade, rodent studies have yielded an impressive list of molecules associated with NAFLD and NASH pathogenesis. However, the identification of currently unknown metabolic factors using mammalian model organisms is inefficient and expensive compared with studies using fish models such as zebrafish (Danio rerio) and medaka (Oryzias latipes). Substantial advances in unraveling the molecular pathogenesis of NAFLD have recently been achieved through unbiased forward genetic screens using small fish models. Furthermore, these easily manipulated organisms have been used to great advantage to evaluate the therapeutic effectiveness of various chemical compounds for the treatment of NAFLD. In this Review, we summarize aspects of NAFLD (specifically focusing on NASH) pathogenesis that have been previously revealed by rodent models, and discuss how small fish are increasingly being used to uncover factors that contribute to normal hepatic lipid metabolism. We describe the various types of fish models in use for this purpose, including those generated by mutation, transgenesis, or dietary or chemical treatment, and contrast them with rodent models. The use of small fish in identifying novel potential therapeutic agents for the treatment of NAFLD and NASH is also addressed.


Hepatology | 2010

Retinoic acid signaling positively regulates liver specification by inducing wnt2bb gene expression in medaka

Takahiro Negishi; Yoko Nagai; Yoichi Asaoka; Mami Ohno; Misako Namae; Hiroshi Mitani; Takashi Sasaki; Nobuyoshi Shimizu; Shuji Terai; Isao Sakaida; Hisato Kondoh; Toshiaki Katada; Makoto Furutani-Seiki; Hiroshi Nishina

During vertebrate embryogenesis, the liver develops at a precise location along the endodermal primitive gut tube because of signaling delivered by adjacent mesodermal tissues. Although several signaling molecules have been associated with liver formation, the molecular mechanism that regulates liver specification is still unclear. We previously performed a screen in medaka to isolate mutants with impaired liver development. The medaka hio mutants exhibit a profound (but transient) defect in liver specification that resembles the liver formation defect found in zebrafish prometheus (prt) mutants, whose mutation occurs in the wnt2bb gene. In addition to their liver abnormality, hio mutants lack pectoral fins and die after hatching. Positional cloning indicated that the hio mutation affects the raldh2 gene encoding retinaldehyde dehydrogenase type2 (RALDH2), the enzyme principally responsible for retinoic acid (RA) biosynthesis. Mutations of raldh2 in zebrafish preclude the development of pectoral fins. Interestingly, in hio mutants, expression of wnt2bb in the lateral plate mesoderm (LPM) directly adjacent to the liver‐forming endoderm was completely lost. Conclusion: Our data reveal the unexpected finding that RA signaling positively regulates the wnt2bb gene expression required for liver specification in medaka. These results suggest that a common molecular mechanism may underlie liver and pectoral fin specification during piscine embryogenesis. (HEPATOLOGY 2009.)


Journal of Cellular Biochemistry | 2010

Negative regulation of wnt11 expression by Jnk signaling during zebrafish gastrulation

Jungwon Seo; Yoichi Asaoka; Yoko Nagai; Jun Hirayama; Tokiwa Yamasaki; Misako Namae; Shinya Ohata; Nao Shimizu; Takahiro Negishi; Daiju Kitagawa; Hisato Kondoh; Makoto Furutani-Seiki; Josef M. Penninger; Toshiaki Katada; Hiroshi Nishina

Stress‐induced Sapk/Jnk signaling is involved in cell survival and apoptosis. Recent studies have increased our understanding of the physiological roles of Jnk signaling in embryonic development. However, still unclear is the precise function of Jnk signaling during gastrulation, a critical step in the establishment of the vertebrate body plan. Here we use morpholino‐mediated knockdown of the zebrafish orthologs of the Jnk activators Mkk4 and Mkk7 to examine the effect of Jnk signaling abrogation on early vertebrate embryogenesis. Depletion of zebrafish Mkk4b led to abnormal convergent extension (CE) during gastrulation, whereas Mkk7 morphants exhibited defective somitogenesis. Surprisingly, Mkk4b morphants displayed marked upregulation of wnt11, which is the triggering ligand of CE and stimulates Jnk activation via the non‐canonical Wnt pathway. Conversely, ectopic activation of Jnk signaling by overexpression of an active form of Mkk4b led to wnt11 downregulation. Mosaic lineage tracing studies revealed that Mkk4b‐Jnk signaling suppressed wnt11 expression in a non‐cell‐autonomous manner. These findings provide the first evidence that wnt11 itself is a downstream target of the Jnk cascade in the non‐canonical Wnt pathway. Our work demonstrates that Jnk activation is indispensable for multiple steps during vertebrate body plan formation. Furthermore, non‐canonical Wnt signaling may coordinate vertebrate CE movements by triggering Jnk activation that represses the expression of the CE‐triggering ligand wnt11. J. Cell. Biochem. 110: 1022–1037, 2010.


PLOS ONE | 2014

The Hippo pathway controls a switch between retinal progenitor cell proliferation and photoreceptor cell differentiation in zebrafish

Yoichi Asaoka; Shoji Hata; Misako Namae; Makoto Furutani-Seiki; Hiroshi Nishina

The precise regulation of numbers and types of neurons through control of cell cycle exit and terminal differentiation is an essential aspect of neurogenesis. The Hippo signaling pathway has recently been identified as playing a crucial role in promoting cell cycle exit and terminal differentiation in multiple types of stem cells, including in retinal progenitor cells. When Hippo signaling is activated, the core Mst1/2 kinases activate the Lats1/2 kinases, which in turn phosphorylate and inhibit the transcriptional cofactor Yap. During mouse retinogenesis, overexpression of Yap prolongs progenitor cell proliferation, whereas inhibition of Yap decreases this proliferation and promotes retinal cell differentiation. However, to date, it remains unknown how the Hippo pathway affects the differentiation of distinct neuronal cell types such as photoreceptor cells. In this study, we investigated whether Hippo signaling regulates retinogenesis during early zebrafish development. Knockdown of zebrafish mst2 induced early embryonic defects, including altered retinal pigmentation and morphogenesis. Similar abnormal retinal phenotypes were observed in zebrafish embryos injected with a constitutively active form of yap [(yap (5SA)]. Loss of Yap’s TEAD-binding domain, two WW domains, or transcription activation domain attenuated the retinal abnormalities induced by yap (5SA), indicating that all of these domains contribute to normal retinal development. Remarkably, yap (5SA)-expressing zebrafish embryos displayed decreased expression of transcription factors such as otx5 and crx, which orchestrate photoreceptor cell differentiation by activating the expression of rhodopsin and other photoreceptor cell genes. Co-immunoprecipitation experiments revealed that Rx1 is a novel interacting partner of Yap that regulates photoreceptor cell differentiation. Our results suggest that Yap suppresses the differentiation of photoreceptor cells from retinal progenitor cells by repressing Rx1-mediated transactivation of photoreceptor cell genes during zebrafish retinogenesis.


BMC Research Notes | 2009

Medaka: a promising model animal for comparative population genomics

Yoshifumi Matsumoto; Hiroki Oota; Yoichi Asaoka; Hiroshi Nishina; Koji Watanabe; Janusz M Bujnicki; Shoji Oda; Shoji Kawamura; Hiroshi Mitani

BackgroundWithin-species genome diversity has been best studied in humans. The international HapMap project has revealed a tremendous amount of single-nucleotide polymorphisms (SNPs) among humans, many of which show signals of positive selection during human evolution. In most of the cases, however, functional differences between the alleles remain experimentally unverified due to the inherent difficulty of human genetic studies. It would therefore be highly useful to have a vertebrate model with the following characteristics: (1) high within-species genetic diversity, (2) a variety of gene-manipulation protocols already developed, and (3) a completely sequenced genome. Medaka (Oryzias latipes) and its congeneric species, tiny fresh-water teleosts distributed broadly in East and Southeast Asia, meet these criteria.FindingsUsing Oryzias species from 27 local populations, we conducted a simple screening of nonsynonymous SNPs for 11 genes with apparent orthology between medaka and humans. We found medaka SNPs for which the same sites in human orthologs are known to be highly differentiated among the HapMap populations. Importantly, some of these SNPs show signals of positive selection.ConclusionThese results indicate that medaka is a promising model system for comparative population genomics exploring the functional and adaptive significance of allelic differentiations.

Collaboration


Dive into the Yoichi Asaoka's collaboration.

Top Co-Authors

Avatar

Hiroshi Nishina

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Misako Namae

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Hirayama

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenji Sawanobori

Tokyo Medical and Dental University

View shared research outputs
Researchain Logo
Decentralizing Knowledge