Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroshi Tarui is active.

Publication


Featured researches published by Hiroshi Tarui.


Developmental Cell | 2008

Cthrc1 Selectively Activates the Planar Cell Polarity Pathway of Wnt Signaling by Stabilizing the Wnt-Receptor Complex

Shinji Yamamoto; Osamu Nishimura; Kazuyo Misaki; Michiru Nishita; Yasuhiro Minami; Shigenobu Yonemura; Hiroshi Tarui; Hiroshi Sasaki

Vertebrate Wnt proteins activate several distinct pathways. Intrinsic differences among Wnt ligands and Frizzled (Fzd) receptors, and the availability of pathway-specific coreceptors, LRP5/6, and Ror2, affect pathway selection. Here, we show that a secreted glycoprotein, Cthrc1, is involved in selective activation of the planar cell polarity (PCP) pathway by Wnt proteins. Although Cthrc1 null mutant mice appeared normal, the introduction of a heterozygous mutation of a PCP gene, Vangl2, resulted in abnormalities characteristic of PCP mutants. In HEK293T cells, Cthrc1 activated the PCP pathway but suppressed the canonical pathway. Cell-surface-anchored Cthrc1 bound to Wnt proteins, Fzd proteins, and Ror2 and enhanced the interaction of Wnt proteins and Fzd/Ror2 by forming the Cthrc1-Wnt-Fzd/Ror2 complex. Consistent with this, Ror2 mutant mice also showed PCP-related abnormalities in the inner ear. These results suggest that Cthrc1 is a Wnt cofactor protein that selectively activates the Wnt/PCP pathway by stabilizing ligand-receptor interaction.


Journal of Cell Science | 2007

The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons.

Masamitsu Sone; Tetsutaro Hayashi; Hiroshi Tarui; Kiyokazu Agata; Masatoshi Takeichi; Shinichi Nakagawa

Recent transcriptome analyses have revealed that a large body of noncoding regions of mammalian genomes are actually transcribed into RNAs. Our understanding of the molecular features of these noncoding RNAs is far from complete. We have identified a novel mRNA-like noncoding gene, named Gomafu, which is expressed in a distinct set of neurons in the mouse nervous system. Interestingly, spliced mature Gomafu RNA is localized to the nucleus despite its mRNA-like characteristics, which usually act as potent export signals to the cytoplasm. Within the nucleus, Gomafu RNA is detected as numerous spots that do not colocalize with known nuclear domain markers. Gomafu RNA is extremely insoluble and remains intact after nuclear matrix preparation. Furthermore, heterokaryon assays revealed that Gomafu RNA does not shuttle between the nucleus and cytoplasm, but is retained in the nucleus after its transcription. We propose that Gomafu RNA represents a novel family of mRNA-like noncoding RNA that constitutes a cell-type-specific component of the nuclear matrix.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes

Kazumi Matsubara; Hiroshi Tarui; Michihisa Toriba; Kazuhiko Yamada; Chizuko Nishida-Umehara; Kiyokazu Agata; Yoichi Matsuda

All snake species exhibit genetic sex determination with the ZZ/ZW type of sex chromosomes. To investigate the origin and evolution of snake sex chromosomes, we constructed, by FISH, a cytogenetic map of the Japanese four-striped rat snake (Elaphe quadrivirgata) with 109 cDNA clones. Eleven of the 109 clones were localized to the Z chromosome. All human and chicken homologues of the snake Z-linked genes were located on autosomes, suggesting that the sex chromosomes of snakes, mammals, and birds were all derived from different autosomal pairs of the common ancestor. We mapped the 11 Z-linked genes of E. quadrivirgata to chromosomes of two other species, the Burmese python (Python molurus bivittatus) and the habu (Trimeresurus flavoviridis), to investigate the process of W chromosome differentiation. All and 3 of the 11 clones were localized to both the Z and W chromosomes in P. molurus and E. quadrivirgata, respectively, whereas no cDNA clones were mapped to the W chromosome in T. flavoviridis. Comparative mapping revealed that the sex chromosomes are only slightly differentiated in P. molurus, whereas they are fully differentiated in T. flavoviridis, and E. quadrivirgata is at a transitional stage of sex-chromosome differentiation. The differentiation of sex chromosomes was probably initiated from the distal region on the short arm of the protosex chromosome of the common ancestor, and then deletion and heterochromatization progressed on the sex-specific chromosome from the phylogenetically primitive boids to the more advanced viperids.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Planarian Hedgehog/Patched establishes anterior–posterior polarity by regulating Wnt signaling

Shigenobu Yazawa; Yoshihiko Umesono; Tetsutaro Hayashi; Hiroshi Tarui; Kiyokazu Agata

Despite long-standing interest, the molecular mechanisms underlying the establishment of anterior–posterior (AP) polarity remain among the unsolved mysteries in metazoans. In the planarians (a family of flatworms), canonical Wnt/β-catenin signaling is required for posterior specification, as it is in many animals. However, the molecular mechanisms regulating the posterior-specific induction of Wnt genes according to the AP polarity have remained unclear. Here, we demonstrate that Hedgehog (Hh) signaling is responsible for the establishment of AP polarity via its regulation of the transcription of Wnt family genes during planarian regeneration. We found that RNAi gene knockdown of Dugesia japonica patched (Djptc) caused ectopic tail formation in the anterior blastema of body fragments, resulting in bipolar-tails regeneration. In contrast, RNAi of hedgehog (Djhh) and gli (Djgli) caused bipolar-heads regeneration. We show that Patched-mediated Hh signaling was crucial for posterior specification, which is established by regulating the transcription of Wnt genes via downstream Gli activity. Moreover, differentiated cells were responsible for the posterior specification of undifferentiated stem cells through Wnt/β-catenin signaling. Surprisingly, Djhh was expressed in neural cells all along the ventral nerve cords (along the AP axis), but not in the posterior blastema of body fragments, where the expression of Wnt genes was induced for posteriorization. We therefore propose that Hh signals direct head or tail regeneration according to the AP polarity, which is established by Hh signaling activity along the bodys preexisting nervous system.


Developmental Dynamics | 2009

Expression of stem cell pluripotency factors during regeneration in newts.

Nobuyasu Maki; Rinako Suetsugu-Maki; Hiroshi Tarui; Kiyokazu Agata; Katia Del Rio-Tsonis; Panagiotis A. Tsonis

In this study, we present data indicating that mammalian stem cell pluripotency‐inducing factors are expressed during lens and limb regeneration in newts. The apparent expression even in intact tissues and the ensued regulation during regeneration raises the possibility that these factors might regulate tissue‐specific reprogramming and regeneration. Furthermore, these factors should enable us to understand the similarities and differences between animal regeneration in the newt and stem cell strategies in mammals. Developmental Dynamics 238:1613–1616, 2009.


Chromosome Research | 2005

Highly conserved linkage homology between birds and turtles: Bird and turtle chromosomes are precise counterparts of each other

Yoichi Matsuda; Chizuko Nishida-Umehara; Hiroshi Tarui; Asato Kuroiwa; Kazuhiko Yamada; Taku Isobe; Junko Ando; Atushi Fujiwara; Yukako Hirao; Osamu Nishimura; Junko Ishijima; Akiko Hayashi; Toshiyuki Saito; Takahiro Murakami; Yasunori Murakami; Shigeru Kuratani; Kiyokazu Agata

The karyotypes of birds, turtles and snakes are characterized by two distinct chromosomal components, macrochromosomes and microchromosomes. This close karyological relationship between birds and reptiles has long been a topic of speculation among cytogeneticists and evolutionary biologists; however, there is scarcely any evidence for orthology at the molecular level. To define the conserved chromosome synteny among humans, chickens and reptiles and the process of genome evolution in the amniotes, we constructed comparative cytogenetic maps of the Chinese soft-shelled turtle (Pelodiscus sinensis) and the Japanese four-striped rat snake (Elaphe quadrivirgata) using cDNA clones of reptile functional genes. Homology between the turtle and chicken chromosomes is highly conserved, with the six largest chromosomes being almost equivalent to each other. On the other hand, homology to chicken chromosomes is lower in the snake than in the turtle. Turtle chromosome 6q and snake chromosome 2p represent conserved synteny with the chicken Z chromosome. These results suggest that the avian and turtle genomes have been well conserved during the evolution of the Arcosauria. The avian and snake sex Z chromosomes were derived from different autosomes in a common ancestor, indicating that the causative genes of sex determination may be different between birds and snakes.


Development Growth & Differentiation | 2010

Single-cell gene profiling of planarian stem cells using fluorescent activated cell sorting and its “index sorting” function for stem cell research

Tetsutaro Hayashi; Norito Shibata; Ryo Okumura; Tomomi Kudome; Osamu Nishimura; Hiroshi Tarui; Kiyokazu Agata

To achieve an integrated understanding of the stem cell system of planarians at both the cellular and molecular levels, we developed a new method by combining “fluorescent activated cell sorting (FACS) index sorting” analysis and single‐cell reverse transcription–polymerase chain reaction (RT–PCR) to detect the gene expression and cell cycle state of stem cells simultaneously. Single cells were collected using FACS, and cDNAs of each cell were used for semi‐quantitative RT–PCR. The results were plotted on the FACS sorting profile using the “index sorting” function, which enabled us to analyze the gene expression in combination with cell biological data (such as cell cycle phase) for each cell. Here we investigated the adult stem cells of planarians using this method and obtained findings suggesting that the stem cells might undergo commitment during S to G2/M phase. This method could be a powerful and straightforward tool for examining the stem cell biology of not only planarians but also other organisms, including vertebrates.


PLOS ONE | 2009

To be or not to be a flatworm : the acoel controversy

Bernhard Egger; Dirk Steinke; Hiroshi Tarui; Katrien De Mulder; Detlev Arendt; Gaetan Borgonie; Noriko Funayama; Robert Gschwentner; Volker Hartenstein; Bert Hobmayer; Matthew D. Hooge; Martina Hrouda; Sachiko Ishida; Chiyoko Kobayashi; Georg Kuales; Osamu Nishimura; Daniela Pfister; Reinhard Rieger; Willi Salvenmoser; Julian Smith; Ulrich Technau; Seth Tyler; Kiyokazu Agata; Walter Salzburger; Peter Ladurner

Since first described, acoels were considered members of the flatworms (Platyhelminthes). However, no clear synapomorphies among the three large flatworm taxa - the Catenulida, the Acoelomorpha and the Rhabditophora - have been characterized to date. Molecular phylogenies, on the other hand, commonly positioned acoels separate from other flatworms. Accordingly, our own multi-locus phylogenetic analysis using 43 genes and 23 animal species places the acoel flatworm Isodiametra pulchra at the base of all Bilateria, distant from other flatworms. By contrast, novel data on the distribution and proliferation of stem cells and the specific mode of epidermal replacement constitute a strong synapomorphy for the Acoela plus the major group of flatworms, the Rhabditophora. The expression of a piwi-like gene not only in gonadal, but also in adult somatic stem cells is another unique feature among bilaterians. These two independent stem-cell-related characters put the Acoela into the Platyhelminthes-Lophotrochozoa clade and account for the most parsimonious evolutionary explanation of epidermal cell renewal in the Bilateria. Most available multigene analyses produce conflicting results regarding the position of the acoels in the tree of life. Given these phylogenomic conflicts and the contradiction of developmental and morphological data with phylogenomic results, the monophyly of the phylum Platyhelminthes and the position of the Acoela remain unresolved. By these data, both the inclusion of Acoela within Platyhelminthes, and their separation from flatworms as basal bilaterians are well-supported alternatives.


Development | 2007

Progressive activation of Delta-Notch signaling from around the blastopore is required to set up a functional caudal lobe in the spider Achaearanea tepidariorum

Hiroki Oda; Osamu Nishimura; Yukako Hirao; Hiroshi Tarui; Kiyokazu Agata; Yasuko Akiyama-Oda

In the development of most arthropods, the caudal region of the elongating germ band (the growth zone) sequentially produces new segments. Previous work with the spider Cupiennius salei suggested involvement of Delta-Notch signaling in segmentation. Here, we report that, in the spider Achaearanea tepidariorum, the same signaling pathway exerts a different function in the presumptive caudal region before initiation of segmentation. In the developing spider embryo, the growth zone becomes morphologically apparent as a caudal lobe around the closed blastopore. We found that, preceding caudal lobe formation, transcripts of a Delta homolog, At-Delta, are expressed in evenly spaced cells in a small area covering the closing blastopore and then in a progressively wider area of the germ disc epithelium. Cells with high At-Delta expression are likely to be prospective mesoderm cells, which later express a twist homolog, At-twist, and individually internalize. Cells remaining at the surface begin to express a caudal homolog, At-caudal, to differentiate as caudal ectoderm. Knockdown of At-Delta by parental RNA interference results in overproduction of At-twist-expressing mesoderm cells at the expense of At-caudal-expressing ectoderm cells. This condition gives rise to a disorganized caudal region that fails to pattern the opisthosoma. In addition, knockdown of Notch and Suppressor of Hairless homologs produces similar phenotypes. We suggest that, in the spider, progressive activation of Delta-Notch signaling from around the blastopore leads to stochastic cell fate decisions between mesoderm and caudal ectoderm through a process of lateral inhibition to set up a functional caudal lobe.


PLOS ONE | 2012

Inference of the Protokaryotypes of Amniotes and Tetrapods and the Evolutionary Processes of Microchromosomes from Comparative Gene Mapping

Yoshinobu Uno; Chizuko Nishida; Hiroshi Tarui; Satoshi Ishishita; Chiyo Takagi; Osamu Nishimura; Junko Ishijima; Hidetoshi Ota; Ayumi Kosaka; Kazumi Matsubara; Yasunori Murakami; Shigeru Kuratani; Naoto Ueno; Kiyokazu Agata; Yoichi Matsuda

Comparative genome analysis of non-avian reptiles and amphibians provides important clues about the process of genome evolution in tetrapods. However, there is still only limited information available on the genome structures of these organisms. Consequently, the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes in tetrapods remain poorly understood. We constructed chromosome maps of functional genes for the Chinese soft-shelled turtle (Pelodiscus sinensis), the Siamese crocodile (Crocodylus siamensis), and the Western clawed frog (Xenopus tropicalis) and compared them with genome and/or chromosome maps of other tetrapod species (salamander, lizard, snake, chicken, and human). This is the first report on the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes inferred from comparative genomic analysis of vertebrates, which cover all major non-avian reptilian taxa (Squamata, Crocodilia, Testudines). The eight largest macrochromosomes of the turtle and chicken were equivalent, and 11 linkage groups had also remained intact in the crocodile. Linkage groups of the chicken macrochromosomes were also highly conserved in X. tropicalis, two squamates, and the salamander, but not in human. Chicken microchromosomal linkages were conserved in the squamates, which have fewer microchromosomes than chicken, and also in Xenopus and the salamander, which both lack microchromosomes; in the latter, the chicken microchromosomal segments have been integrated into macrochromosomes. Our present findings open up the possibility that the ancestral amniotes and tetrapods had at least 10 large genetic linkage groups and many microchromosomes, which corresponded to the chicken macro- and microchromosomes, respectively. The turtle and chicken might retain the microchromosomes of the amniote protokaryotype almost intact. The decrease in number and/or disappearance of microchromosomes by repeated chromosomal fusions probably occurred independently in the amphibian, squamate, crocodilian, and mammalian lineages.

Collaboration


Dive into the Hiroshi Tarui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge