Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hirotaka Ebina is active.

Publication


Featured researches published by Hirotaka Ebina.


Scientific Reports | 2013

Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus

Hirotaka Ebina; Naoko Misawa; Yuka Kanemura; Yoshio Koyanagi

Even though highly active anti-retroviral therapy is able to keep HIV-1 replication under control, the virus can lie in a dormant state within the host genome, known as a latent reservoir, and poses a threat to re-emerge at any time. However, novel technologies aimed at disrupting HIV-1 provirus may be capable of eradicating viral genomes from infected individuals. In this study, we showed the potential of the CRISPR/Cas9 system to edit the HIV-1 genome and block its expression. When LTR-targeting CRISPR/Cas9 components were transfected into HIV-1 LTR expression-dormant and -inducible T cells, a significant loss of LTR-driven expression was observed after stimulation. Sequence analysis confirmed that this CRISPR/Cas9 system efficiently cleaved and mutated LTR target sites. More importantly, this system was also able to remove internal viral genes from the host cell chromosome. Our results suggest that the CRISPR/Cas9 system may be a useful tool for curing HIV-1 infection.


Journal of Virology | 2011

Identification of Amino Acids in the Human Tetherin Transmembrane Domain Responsible for HIV-1 Vpu Interaction and Susceptibility

Tomoko Kobayashi; Hirotaka Ode; Takeshi Yoshida; Kei Sato; Peter Gee; Seiji P. Yamamoto; Hirotaka Ebina; Klaus Strebel; Hironori Sato; Yoshio Koyanagi

ABSTRACT Tetherin, also known as BST-2/CD317/HM1.24, is an antiviral cellular protein that inhibits the release of HIV-1 particles from infected cells. HIV-1 viral protein U (Vpu) is a specific antagonist of human tetherin that might contribute to the high virulence of HIV-1. In this study, we show that three amino acid residues (I34, L37, and L41) in the transmembrane (TM) domain of human tetherin are critical for the interaction with Vpu by using a live cell-based assay. We also found that the conservation of an additional amino acid at position 45 and two residues downstream of position 22, which are absent from monkey tetherins, are required for the antagonism by Vpu. Moreover, computer-assisted structural modeling and mutagenesis studies suggest that an alignment of these four amino acid residues (I34, L37, L41, and T45) on the same helical face in the TM domain is crucial for the Vpu-mediated antagonism of human tetherin. These results contribute to the molecular understanding of human tetherin-specific antagonism by HIV-1 Vpu.


Virus Genes | 2003

Quantitative Analysis of Human Immunodeficiency Virus Type 1 DNA Dynamics by Real-Time PCR: Integration Efficiency in Stimulated and Unstimulated Peripheral Blood Mononuclear Cells

Youichi Suzuki; Naoko Misawa; Chihiro Sato; Hirotaka Ebina; Takao Masuda; Naoki Yamamoto; Yoshio Koyanagi

We established a set of real-time PCR assay to accurately quantify human immunodeficiency virus type 1 (HIV-1) DNA in infected cells. Using this assay we were able to measure the strong-stop, full-length/ 1-LTR circle, 2-LTR circle, and integrated forms of viral DNA, and the data provided was quite consistent with the characteristics of mutant viruses in early phase of infection. Since our assay is particularly applicable to quantify the integrated DNA in small scale of samples, we measured the level of integrated DNA in wild-type virus (WT)- or Vpr-defective virus (ΔVpr)-infected peripheral blood mononuclear cells (PBMC), and examined whether quiescent condition of the PBMC influences integration step of HIV-1. Under stimulating condition approximately 25% of total viral DNA was in integrated form in either WT- or ΔVpr-infected cells. In contrast, under unstimulated condition the level of integration efficiency was not significantly reduced in WT-infected cells, while this efficiency was severely impaired in the absence of vpr gene. This result clearly demonstrated a crucial role of the Vpr for nuclear localization and subsequent integration of viral DNA in nondividing cells. Therefore, our assay is useful for analyzing the events in early phase of HIV-1 infection under various conditions.


PLOS ONE | 2015

A High Excision Potential of TALENs for Integrated DNA of HIV-Based Lentiviral Vector

Hirotaka Ebina; Yuka Kanemura; Naoko Misawa; Tetsushi Sakuma; Tomoko Kobayashi; Takashi Yamamoto; Yoshio Koyanagi

DNA-editing technology has made it possible to rewrite genetic information in living cells. Human immunodeficiency virus (HIV) provirus, an integrated form of viral complementary DNA in host chromosomes, could be a potential target for this technology. We recently reported that HIV proviral DNA could be excised from the chromosomal DNA of HIV-based lentiviral DNA-transduced T cells after multiple introductions of a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 endonuclease system targeting HIV long terminal repeats (LTR). Here, we generated a more efficient strategy that enables the excision of HIV proviral DNA using customized transcription activator-like effector nucleases (TALENs) targeting the same HIV LTR site. A single transfection of TALEN-encoding mRNA, prepared from in vitro transcription, resulted in more than 80% of lentiviral vector DNA being successfully removed from the T cell lines. Furthermore, we developed a lentiviral vector system that takes advantage of the efficient proviral excision with TALENs and permits the simple selection of gene-transduced and excised cells in T cell lines.


Journal of Virology | 2011

APOBEC1-mediated editing and attenuation of herpes simplex virus 1 DNA indicate that neurons have an antiviral role during herpes simplex encephalitis

Peter Gee; Yoshinori Ando; Hiroko Kitayama; Seiji P. Yamamoto; Yuka Kanemura; Hirotaka Ebina; Yasushi Kawaguchi; Yoshio Koyanagi

ABSTRACT APOBEC1 (A1) is a cytidine deaminase involved in the regulation of lipids in the small intestine. Herpes simplex virus 1 (HSV-1) is a ubiquitous pathogen that is capable of infecting neurons in the brain, causing encephalitis. Here, we show that A1 is induced during encephalitis in neurons of rats infected with HSV-1. In cells stably expressing A1, HSV-1 infection resulted in significantly reduced virus replication compared to that in control cells. Infectivity could be restored to levels comparable to those observed for control cells if A1 expression was silenced by specific A1 short hairpin RNAs (shRNA). Moreover, cytidine deaminase activity appeared to be essential for this inhibition and led to an impaired accumulation of viral mRNA transcripts and DNA copy numbers. The sequencing of viral gene UL54 DNA, extracted from infected A1-expressing cells, revealed G-to-A and C-to-T transitions, indicating that A1 associates with HSV-1 DNA. Taken together, our results demonstrate a model in which A1 induction during encephalitis in neurons may aid in thwarting HSV-1 infection.


Microbiology and Immunology | 2016

Anti‐HIV‐1 potency of the CRISPR/Cas9 system insufficient to fully inhibit viral replication

Shuhei Ueda; Hirotaka Ebina; Yuka Kanemura; Naoko Misawa; Yoshio Koyanagi

The range of genome‐editing tools has recently been expanded. In particular, an RNA‐guided genome‐editing tool, the clustered regularly interspaced short palindromic repeat (CRISPR)‐associated 9 (Cas9) system, has many applications for human diseases. In this study, guide RNA (gRNA) to target gag, pol and a long terminal repeat of HIV‐1 was designed and used to generate gRNA‐expressing lentiviral vectors. An HIV‐1‐specific gRNA and Cas9 were stably dually transduced into a highly HIV‐1‐susceptible human T‐cell line and the inhibitory ability of the anti‐HIV‐1 CRISPR/Cas9 lentiviral vector assessed. Although clear inhibition of the early phase of HIV‐1 infection was observed, as evaluated by a VSV‐G‐pseudotyped HIV‐1 reporter system, the anti‐HIV‐1 potency in multiple rounds of wild type (WT) viral replication was insufficient, either because of generation of resistant viruses or overcoming of the activity of the WT virus. Thus, there are potential difficulties that must be addressed when considering anti‐HIV‐1 treatment with the CRISPR/Cas9 system alone.


Microbiology and Immunology | 2016

Insufficient anti‐HIV‐1 potency of the CRISPR/Cas9 system for full viral replication

Shuhei Ueda; Hirotaka Ebina; Yuka Kanemura; Naoko Misawa; Yoshio Koyanagi

The range of genome‐editing tools has recently been expanded. In particular, an RNA‐guided genome‐editing tool, the clustered regularly interspaced short palindromic repeat (CRISPR)‐associated 9 (Cas9) system, has many applications for human diseases. In this study, guide RNA (gRNA) to target gag, pol and a long terminal repeat of HIV‐1 was designed and used to generate gRNA‐expressing lentiviral vectors. An HIV‐1‐specific gRNA and Cas9 were stably dually transduced into a highly HIV‐1‐susceptible human T‐cell line and the inhibitory ability of the anti‐HIV‐1 CRISPR/Cas9 lentiviral vector assessed. Although clear inhibition of the early phase of HIV‐1 infection was observed, as evaluated by a VSV‐G‐pseudotyped HIV‐1 reporter system, the anti‐HIV‐1 potency in multiple rounds of wild type (WT) viral replication was insufficient, either because of generation of resistant viruses or overcoming of the activity of the WT virus. Thus, there are potential difficulties that must be addressed when considering anti‐HIV‐1 treatment with the CRISPR/Cas9 system alone.


Microbiology and Immunology | 2009

N‐linked glycan‐dependent interaction of CD63 with CXCR4 at the Golgi apparatus induces downregulation of CXCR4

Takeshi Yoshida; Hirotaka Ebina; Yoshio Koyanagi

Efficient downregulation of CXCR4 cell surface expression by introduction of the CD63 gene has previously been reported by us. In the present study, it was found that CD63 and its mutant efficiently interact with CXCR4 in live cells and that CD63‐induced downregulation and interaction are significantly abrogated by the N‐linked glycosylation inhibitor, TM. Furthermore, the downregulation and interaction were clearly attenuated by alternation of all three N‐linked glycosylation sites in CD63. Either CD63 or CD63ΔN formed a complex with CXCR4 at the Golgi apparatus and the late endosomes, while CD63 GD mutants lost the ability to form a complex with CXCR4 exclusively at the Golgi apparatus. These findings suggest that CD63 interacts with CXCR4 through the N‐linked glycans‐portion of the CD63 protein and that the complex induces direction of CXCR4 trafficking to the endosomes/lysosomes, rather than to the plasma membrane. At the Golgi apparatus, there may be lysosome protein (CD63)‐associated machinery that influences trafficking of other membrane proteins.


Virology | 2012

Integrase-independent HIV-1 infection is augmented under conditions of DNA damage and produces a viral reservoir

Hirotaka Ebina; Yuka Kanemura; Yasutsugu Suzuki; Kozue Urata; Naoko Misawa; Yoshio Koyanagi

HIV-1 possesses a viral protein, integrase (IN), which is necessary for its efficient integration in target cells. However, it has been reported that an IN-defective HIV strain is still capable of integration. Here, we assessed the ability of wild type (WT) HIV-1 to establish infection in the presence of IN inhibitors. We observed a low, yet clear infection of inhibitor-incubated cells infected with WT HIV which was identical to cells infected with IN-deficient HIV, D64A. Furthermore, the IN-independent integration could be enhanced by the pretreatment of cells with DNA-damaging agents suggesting that integration is mediated by a DNA repair system. Moreover, significantly faster viral replication kinetics with augmented viral DNA integration was observed after infection in irradiated cells treated with IN inhibitor compared to nonirradiated cells. Altogether, our results suggest that HIV DNA has integration potential in the presence of an IN inhibitor and may serve as a virus reservoir.


PLOS Pathogens | 2016

Characterization of RyDEN (C19orf66) as an Interferon-Stimulated Cellular Inhibitor against Dengue Virus Replication

Youichi Suzuki; Wei Xin Chin; Qi'En Han; Koji Ichiyama; Ching Hua Lee; Zhi Wen Eyo; Hirotaka Ebina; Hirotaka Takahashi; Chikako Takahashi; Beng Hui Tan; Takayuki Hishiki; Kenji Ohba; Toshifumi Matsuyama; Yoshio Koyanagi; Yee Joo Tan; Tatsuya Sawasaki; Justin Jang Hann Chu; Subhash G. Vasudevan; Kouichi Sano; Naoki Yamamoto

Dengue virus (DENV) is one of the most important arthropod-borne pathogens that cause life-threatening diseases in humans. However, no vaccine or specific antiviral is available for dengue. As seen in other RNA viruses, the innate immune system plays a key role in controlling DENV infection and disease outcome. Although the interferon (IFN) response, which is central to host protective immunity, has been reported to limit DENV replication, the molecular details of how DENV infection is modulated by IFN treatment are elusive. In this study, by employing a gain-of-function screen using a type I IFN-treated cell-derived cDNA library, we identified a previously uncharacterized gene, C19orf66, as an IFN-stimulated gene (ISG) that inhibits DENV replication, which we named Repressor of yield of DENV (RyDEN). Overexpression and gene knockdown experiments revealed that expression of RyDEN confers resistance to all serotypes of DENV in human cells. RyDEN expression also limited the replication of hepatitis C virus, Kunjin virus, Chikungunya virus, herpes simplex virus type 1, and human adenovirus. Importantly, RyDEN was considered to be a crucial effector molecule in the IFN-mediated anti-DENV response. When affinity purification-mass spectrometry analysis was performed, RyDEN was revealed to form a complex with cellular mRNA-binding proteins, poly(A)-binding protein cytoplasmic 1 (PABPC1), and La motif-related protein 1 (LARP1). Interestingly, PABPC1 and LARP1 were found to be positive modulators of DENV replication. Since RyDEN influenced intracellular events on DENV replication and, suppression of protein synthesis from DENV-based reporter construct RNA was also observed in RyDEN-expressing cells, our data suggest that RyDEN is likely to interfere with the translation of DENV via interaction with viral RNA and cellular mRNA-binding proteins, resulting in the inhibition of virus replication in infected cells.

Collaboration


Dive into the Hirotaka Ebina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomoko Kobayashi

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Youichi Suzuki

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge