Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hirotsugu Tsuchimochi is active.

Publication


Featured researches published by Hirotsugu Tsuchimochi.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Chronic femoral artery occlusion augments exercise pressor reflex in decerebrated rats

Hirotsugu Tsuchimochi; Jennifer L. McCord; Shawn G. Hayes; Satoshi Koba; Marc P. Kaufman

In decerebrated rats, we determined the pressor and cardioaccelerator reflex responses to static contraction of hindlimb muscles whose femoral arteries were either occluded 72 h before contraction, occluded 3 min before contraction, or freely perfused. We found that the pressor reflex arising from the limb whose femoral artery was occluded for 72 h before contraction (32 +/- 5 mmHg, n = 16) was significantly higher than the pressor reflex arising from the contralateral freely perfused limb (15 +/- 3 mmHg, n = 16, P < 0.001) or than that arising from the contralateral limb whose femoral artery was occluded for only 3 min (17 +/- 4 mmHg, n = 16, P < 0.001). Moreover, the pressor reflex arising from the limb whose femoral artery was occluded for 3 min before the start of contraction was not significantly different than that arising from the contralateral freely perfused limb (n = 16, P = 0.819). The pressor component of the reflex arising from the limb whose femoral artery was occluded for 72 h was not changed by transient receptor potential vanilloid (TRPV) 1 receptor blockade with iodo-resiniferatoxin (n = 15, P = 0.272), although the cardioaccelerator component was significantly reduced (P = 0.005). In addition, the pressor response evoked by capsaicin injection in the femoral artery of the 72-h occluded limb was more than double that evoked from the freely perfused limb (P = 0.026). We conclude that chronic (i.e., 72 h) but not acute (3 min), femoral arterial occlusion augments pressor reflex arising from contraction of hindlimb muscles and that TRPV1 receptors play little role in this augmentation.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Acid-sensing ion channels contribute to the metaboreceptor component of the exercise pressor reflex

Jennifer L. McCord; Hirotsugu Tsuchimochi; Marc P. Kaufman

The exercise pressor reflex is evoked by both mechanical and metabolic stimuli arising in contracting skeletal muscle. Recently, the blockade of acid-sensing ion channels (ASICs) with amiloride and A-316567 attenuated the reflex. Moreover, amiloride had no effect on the mechanoreceptor component of the reflex, prompting us to determine whether ASICs contributed to the metaboreceptor component of the exercise pressor reflex. The metaboreceptor component can be assessed by measuring mean arterial pressure during postcontraction circulatory occlusion when only the metaboreceptors are stimulated. We examined the effects of amiloride (0.5 microg/kg), A-317567 (10 mM, 0.5 ml), and saline (0.5 ml) on the pressor response to and after static contraction while the circulation was occluded in 30 decerebrated cats. Amiloride (n = 11) and A-317567 (n = 7), injected into the arterial supply of the triceps surae muscles, attenuated the pressor responses both to contraction while the circulation was occluded and to postcontraction circulatory occlusion (all, P < 0.05). Saline (n = 11), however, had no effect on the pressor responses to contraction while the circulation was occluded or to postcontraction circulatory occlusion (both, P > 0.79). Our findings led us to conclude that ASICs contribute to the metaboreceptor component of the exercise pressor reflex.


The Journal of Physiology | 2011

Blockade of acid sensing ion channels attenuates the augmented exercise pressor reflex in rats with chronic femoral artery occlusion

Hirotsugu Tsuchimochi; Katsuya Yamauchi; Jennifer L. McCord; Marc P. Kaufman

Non‐technical summaryu2002 In patients with peripheral artery disease arterial blood flow to the legs is adequate at rest, but does not increase to meet metabolic demand of the muscles during exercise. Consequently, the arterial blood pressure response to exercise in these patients is greater than it is in healthy subjects. We tested the hypothesis that this exaggerated arterial pressure response to exercise is caused by the stimulation of the ion channel ASIC3 on the endings of sensory nerves in contracting skeletal muscle. We performed our experiments in decerebrated rats. Three days before the experiment, we ligated the left femoral artery, a manoeuvre which has been shown to simulate the arterial blood flow patterns to hindlimb skeletal muscles that are found in patients with peripheral artery disease. We found that blockade of ASIC3 with two different compounds attenuated the increase in arterial pressure evoked by left hindlimb muscle contraction.


Journal of Applied Physiology | 2010

P2X2/3 and P2X3 receptors contribute to the metaboreceptor component of the exercise pressor reflex

Jennifer L. McCord; Hirotsugu Tsuchimochi; Marc P. Kaufman

The exercise pressor reflex is due to activation of thin fiber afferents within contracting muscle. These afferents are in part stimulated by ATP activation of purinergic 2X (P2X) receptors during contraction. Which of the P2X receptors contribute to the reflex is unknown; however, P2X2/3 and P2X3 receptor subtypes are good candidates because they are located on thin fiber afferents and are involved in sensory neurotransmission. To determine if P2X2/3 and P2X3 receptors evoke the metabolic component of the exercise pressor reflex, we examined the effect of two P2X2/3 and P2X3 antagonists, A-317491 (10 mg/kg) and RO-3 (10 mg/kg), on the pressor response to injections of α,β-methylene ATP (α,β-MeATP; 50 μg/kg), freely perfused static contraction, contraction of the triceps surae muscles while the circulation was occluded, and postcontraction circulatory occlusion in decerebrate cats. We found that the antagonists reduced the pressor response to α,β-MeATP injection (before Δ 20 ± 3 mmHg; drug Δ 11 ± 3 mmHg; P < 0.05), suggesting the antagonists were effective in blocking P2X2/3 and P2X3 receptors. P2X2/3 and P2X3 receptor blockade reduced the pressor response to freely perfused contraction (before Δ 33 ± 5 mmHg; drug Δ 15 ± 5 mmHg; P < 0.05), contraction with the circulation occluded (before Δ 52 ± 7 mmHg; drug Δ 20 ± 4 mmHg; P < 0.05), and during postcontraction circulatory occlusion (before Δ 15 ± 1 mmHg; drug Δ 5 ± 1 mmHg; P < 0.05). Our findings suggest that P2X2/3 and P2X3 receptors contribute to the metabolic component of the exercise pressor reflex in decerebrate cats.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Peripheral μ-opioid receptors attenuate the augmented exercise pressor reflex in rats with chronic femoral artery occlusion

Hirotsugu Tsuchimochi; Jennifer L. McCord; Marc P. Kaufman

Recently, opioid receptors have been shown to be expressed on group III and IV afferents, which comprise the sensory arm of the exercise pressor reflex. Although the stimulation of opioid receptors in the central nervous system has been shown to attenuate the exercise pressor reflex, the effect on the reflex of their stimulation in the periphery is unknown. We therefore tested the hypothesis that the activation of peripheral mu-opioid receptors attenuates the exercise pressor reflex. The pressor responses to static contraction were compared before and after the injection of the mu-opioid receptor agonist [d-Ala(2),N-MePhe(4),Gly-ol(5)]enkephalin (DAMGO; 1 microg) into the abdominal aorta of decerebrated rats in which one femoral artery had been occluded 72 h previously (n = 10) and in control rats whose femoral arteries were freely perfused (n = 8). DAMGO attenuated the peak pressor response to contraction in rats whose femoral arteries had been occluded (before: increase of 34 + or - 3 mmHg and after: increase of 22 + or - 2 mmHg, P = 0.008); the inhibitory effect of DAMGO was prevented by the injection of naloxone (100 microg) into the abdominal aorta (before: increase of 29 + or - 5 mmHg and after: increase of 29 + or - 5 mmHg, P = 0.646, n = 7). An intravenous injection of DAMGO (1 microg, n = 6) had no effect on the peak pressor response to contraction in both groups of rats. DAMGO had no effect on the peak pressor response to contraction in rats whose femoral arteries were freely perfused (before: Delta 23 + or - 4 mmHg, after: Delta 23 + or - 3 mmHg, n = 6) but appeared to have a small effect on topography of the response. DAMGO had no effect on the peak pressor response to tendon stretch in both groups of rats (both P > 0.05). We conclude that the stimulation of peripheral mu-opioid receptors attenuates the exercise pressor reflex in rats whose femoral arteries have been ligated for 72 h.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Both central command and exercise pressor reflex activate cardiac sympathetic nerve activity in decerebrate cats

Hirotsugu Tsuchimochi; Shawn G. Hayes; Jennifer L. McCord; Marc P. Kaufman

Both static and dynamic exercise are known to increase cardiac pump function as well as arterial blood pressure. Feedforward control by central command and feedback control by the exercise pressor reflex are thought to be the neural mechanisms causing these effects during exercise. It remains unknown as to how each mechanism activates cardiac sympathetic nerve activity (CSNA) during exercise, especially at its onset. Thus we examined the response of CSNA to stimulation of the mesencephalic locomotor region (MLR, i.e., central command) and to static muscle contraction of the triceps surae muscles or stretch of the calcaneal tendon in decerebrate cats. We found that MLR stimulation immediately increased CSNA, which was followed by a gradual increase in heart rate, mean arterial pressure, and ventral root activity in a stimulus intensity-dependent manner. The latency of the increase in CSNA from the onset of MLR stimulation ranged from 67 to 387 ms. Both static contraction and tendon stretch also rapidly increased CSNA. Their latency from the development of tension in response to ventral root stimulation ranged from 78 to 670 ms. These findings suggest that both central command and the muscle mechanoreflex play a role in controlling cardiac sympathetic outflow at the onset of exercise.


Journal of Applied Physiology | 2011

Tempol attenuates the exercise pressor reflex independently of neutralizing reactive oxygen species in femoral artery ligated rats

Jennifer L. McCord; Hirotsugu Tsuchimochi; Katsuya Yamauchi; Anna K. Leal; Marc P. Kaufman

In decerebrate rats, we reported previously that the exercise pressor reflex arising from a limb whose femoral artery was occluded for 72 h before the experiment was significantly higher than the exercise pressor reflex arising from a contralateral freely perfused limb. These findings prompted us to examine whether reactive oxygen species contributed to the augmented pressor reflex in rats with femoral artery occlusion. We found that the pressor reflex arising from the limb whose femoral artery was occluded for 72 h before the experiment (31 ± 5 mmHg) was attenuated by tempol (10 mg), a superoxide dismutase (SOD) mimetic (18 ± 5 mmHg, n = 9, P < 0.05), that was injected into the arterial supply of the hindlimb. In contrast, the pressor reflex arising from a freely perfused hindlimb (20 ± 3 mmHg) was not attenuated by tempol (17 ± 4 mmHg, n = 10, P = 0.49). Nevertheless, we found no difference in the increase in 8-isoprostaglandin F(2α) levels, an index of reactive oxygen species, in response to contraction between freely perfused (3.76 ± 0.82 pg/ml, n = 19) and 72-h occluded (3.51 ± 0.92 pg/ml, n = 22, P = 0.90) hindlimbs. Moreover, tempol did not reduce the 8-isoprostaglandin F(2α) levels during contraction in either group (P > 0.30). A second SOD mimetic, tiron (200 mg/kg), had no effect on the exercise pressor reflex in either the rats with freely perfused hindlimbs or in those with occluded femoral arteries. These findings suggest that tempol attenuated the exercise pressor reflex in the femoral artery-occluded hindlimb by a mechanism that was independent of its ability to scavenge reactive oxygen species.


American Journal of Physiology-heart and Circulatory Physiology | 2011

Blockade of the TP receptor attenuates the exercise pressor reflex in decerebrated rats with chronic femoral artery occlusion

Anna K. Leal; Jennifer L. McCord; Hirotsugu Tsuchimochi; Marc P. Kaufman

Cyclooxygenase metabolites stimulate or sensitize group III and IV muscle afferents, which comprise the sensory arm of the exercise pressor reflex. The thromboxane (TP) receptor binds several of these metabolites, whose concentrations in the muscle interstitium are increased by exercise under freely perfused conditions and even more so under ischemic conditions, which occur in peripheral artery disease. We showed that the exercise pressor reflex is greater in rats with simulated peripheral artery disease than in rats with freely perfused limbs. These findings prompted us to test the hypothesis that the TP receptor contributes to the exaggerated exercise pressor reflex occurring in a rat model of peripheral artery disease. We compared the cardiovascular responses to static contraction and stretch before and after femoral arterial injections of daltroban (80 μg), a TP receptor antagonist. We performed these experiments in decerebrate rats whose femoral arteries were ligated 72 h before the experiment (a model of simulated peripheral artery disease) and in control rats whose hindlimbs were freely perfused. Daltroban reduced the pressor response to static contraction in both freely perfused (n = 6; before: Δ12 ± 2 mmHg, after: Δ6 ± 2 mmHg, P = 0.024) and 72-h-ligated rats (n = 10; before: Δ25 ± 3 mmHg, after: Δ7 ± 4 mmHg, P = 0.001). Likewise, daltroban reduced the pressor response to stretch in the freely perfused group (n = 9; before: Δ30 ± 3 mmHg, after: Δ17 ± 3 mmHg, P < 0.0001) and in the ligated group (n = 11; before: Δ37 ± 5 mmHg, after: Δ23 ± 3 mmHg, P = 0.016). Intravenous injections of daltroban had no effect on the pressor response to contraction. We conclude that the TP receptor contributes to the pressor responses evoked by contraction and stretch in both freely perfused rats and rats with simulated peripheral artery disease.


American Journal of Physiology-heart and Circulatory Physiology | 2014

Increased dietary salt intake enhances the exercise pressor reflex

Katsuya Yamauchi; Hirotsugu Tsuchimochi; Audrey J. Stone; Sean D. Stocker; Marc P. Kaufman

Increased dietary salt in rats has been shown to sensitize central sympathetic circuits and enhance sympathetic responses to several stressors, including hyperinsulinemia, intracerebroventricular injection of angiotensin, and electrical stimulation of sciatic nerve afferents. These findings prompted us to test the hypothesis that increased dietary salt enhanced the exercise pressor reflex. Male Sprague-Dawley rats were fed 0.1% (low) or 4.0% (high) NaCl chow for 2 to 3 wk. On the day of the experiment, the rats were decerebrated, and the hind limb muscles were statically contracted for 30 s by electrically stimulating the cut peripheral ends of the L4 and L5 ventral roots. We found that contraction produced a significantly greater increase in mean arterial pressure of rats fed 4.0% (n = 26) vs. 0.1% (n = 22) NaCl (24 ± 2 vs. 15 ± 2 mmHg, respectively; P < 0.05). Baseline mean arterial pressure was not different between groups (0.1%, 77 ± 4 vs. 4.0% NaCl, 80 ± 3 mmHg). Likewise, the tension time indexes were not different between the two groups (P = 0.42). Section of the L4 and L5 dorsal roots greatly attenuated both the pressor and cardioaccelerator responses to contraction in both groups of rats, an effect showing that the responses were reflex in origin. Finally, electrical stimulation of the lumbar sympathetic chain produced similar increases in mean arterial pressure and decreases in femoral arterial blood flow and conductance between rats fed 0.1% vs. 4.0% NaCl diets. We conclude that increased dietary salt enhances the exercise pressor reflex.


American Journal of Physiology-heart and Circulatory Physiology | 2011

Dorsal root tetrodotoxin-resistant sodium channels do not contribute to the augmented exercise pressor reflex in rats with chronic femoral artery occlusion

Hirotsugu Tsuchimochi; Jennifer L. McCord; Anna K. Leal; Marc P. Kaufman

We investigated the contribution of tetrodotoxin (TTX)-resistant sodium channels to the augmented exercise pressor reflex observed in decerebrated rats with femoral artery ligation. The pressor responses to static contraction, to tendon stretch, and to electrical stimulation of the tibial nerve were compared before and after blocking TTX-sensitive sodium channels on the L3-L6 dorsal roots of rats whose hindlimbs were freely perfused and rats whose femoral arteries were ligated 72 h before the start of the experiment. In the freely perfused group (n=9), pressor (Δ22±4 mmHg) and cardioaccelerator (Δ32±6 beats/min) responses to contraction were attenuated by 1 μM TTX (Δ4±1 mmHg, P<0.05 and Δ17±4 beats/min, P<0.05, respectively). In the 72 h ligated group (n=9), the augmented pressor response to contraction (32±4 mmHg) was also attenuated by 1 μM TTX (Δ8±2 mmHg, P<0.05). The cardioaccelerator response to contraction was not significantly attenuated in these rats. In addition, TTX suppressed the pressor response to tendon stretch in both groups of rats. Electrical stimulation of the tibial nerve evoked similar pressor responses between the two groups (freely perfused: Δ74±9 mmHg and 72 h ligated: Δ78±5 mmHg). TTX attenuated the pressor response to the tibial nerve stimulation by about one-half in both groups. Application of the TTX-resistant sodium channel blocker A-803467 (1 μM) with TTX (1 μM) did not block the pressor response to tibial nerve stimulation to any greater extent than did application of TTX (1 μM) alone. Although the contribution of TTX-resistant sodium channels to the augmented exercise pressor reflex may be slightly increased in rats with chronic femoral artery ligation, TTX-resistant sodium channels on dorsal roots do not play a major role in the augmented exercise pressor reflex.

Collaboration


Dive into the Hirotsugu Tsuchimochi's collaboration.

Top Co-Authors

Avatar

Marc P. Kaufman

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. McCord

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Anna K. Leal

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Katsuya Yamauchi

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Shawn G. Hayes

University of California

View shared research outputs
Top Co-Authors

Avatar

Sean D. Stocker

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Audrey J. Stone

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Charity L. Sauder

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chester A. Ray

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge