Hiroumi Shiina
National Institute of Advanced Industrial Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hiroumi Shiina.
Journal of Physical Chemistry A | 2014
Akira Matsugi; Kenji Yasunaga; Hiroumi Shiina
1,1,1-Trifluoroethane (CH3CF3) has been frequently used as a chemical thermometer or an internal standard in shock tube studies to determine relative rates of chemical reactions. The rate constants for the thermal decomposition of CH3CF3 were recently reported to have anomalous pressure dependence in the high-temperature falloff region. In the present study, the kinetics of the CH3CF3 decomposition were reinvestigated using shock tube/laser absorption (ST/LA) spectroscopy and single-pulse shock tube (SPST) methods over the temperature range 1163-1831 K at pressures from 95 to 290 kPa. The present rate constants are 2-3 times smaller than those reported in previous single-pulse experiments performed at near high-pressure limit conditions. The recommended rate constant expression, k = 5.71 × 10(46)T(-9.341) exp(-47073 K/T) s(-1), was obtained over the temperature range 1000-1600 K with uncertainties of ±40% at temperatures below 1300 K and ±32% at 1600 K. The rate constants at the high-temperature region showed clear falloff behavior and were in good agreement with recent high-temperature experiments. The falloff rate constants could not be reproduced by a standard RRKM/master-equation model; this study provides additional evidence for the unusual pressure dependence previously reported for this reaction. Additionally, the rate constants for the decomposition of 1,1-difluoroethylene (CH2CF2) were determined over the temperature range 1650-2059 K at pressures of 100 and 205 kPa, and were reproduced by the RRKM/master-equation calculation with an average downward energy transfer of 900 cm(-1).
Journal of Physical Chemistry A | 2016
Akira Matsugi; Hiroumi Shiina; Tatsuo Oguchi; Kazuo Takahashi
A fast and sensitive broadband absorption technique for measurements of high-temperature chemical kinetics and spectroscopy has been developed by applying broadband cavity-enhanced absorption spectroscopy (BBCEAS) in a shock tube. The developed method has effective absorption path lengths of 60-200 cm, or cavity enhancement factors of 12-40, over a wavelength range of 280-420 nm, and is capable of simultaneously recording absorption time profiles over an ∼32 nm spectral bandpass in a single experiment with temporal and spectral resolutions of 5 μs and 2 nm, respectively. The accuracy of the kinetic and spectroscopic measurements was examined by investigating high-temperature reactions and absorption spectra of formaldehyde behind reflected shock waves using 1,3,5-trioxane as a precursor. The rate constants obtained for the thermal decomposition reactions of 1,3,5-trioxane (to three formaldehyde molecules) and formaldehyde (to HCO + H) agreed well with the literature data. High-temperature absorption cross sections of formaldehyde between 280 and 410 nm have been determined at the post-reflected-shock temperatures of 955, 1265, and 1708 K. The results demonstrate the applicability of the BBCEAS technique to time- and wavelength-resolved sensitive absorption measurements at high temperatures.
Journal of Physical Chemistry A | 2017
Akira Matsugi; Hiroumi Shiina
The thermal decomposition of gaseous nitromethane and the subsequent bimolecular reaction between CH3 and NO2 have been experimentally studied using time-resolved cavity-enhanced absorption spectroscopy behind reflected shock waves in the temperature range 1336-1827 K and at a pressure of 100 kPa. Temporal evolution of NO2 was observed following the pyrolysis of nitromethane (diluted to 80-140 ppm in argon) by monitoring the absorption around 400 nm. The primary objectives of the current work were to evaluate the rate constant for the CH3 + NO2 reaction (k2) and to examine the contribution of the roaming isomerization pathway in nitromethane decomposition. The resultant rate constant can be expressed as k2 = (9.3 ± 1.8) × 10-10(T/K)-0.5 cm3 molecule-1 s-1, which is in reasonable agreement with available literature data. The decomposition of nitromethane was found to predominantly proceed with the C-N bond fission process with the branching fraction of 0.97 ± 0.06. Therefore, the upper limit of the branching fraction for the roaming pathway was evaluated to be 0.09.
Journal of Physical Chemistry A | 2013
Akira Matsugi; Hiroumi Shiina; Kentaro Tsuchiya; Akira Miyoshi
Vibrationally excited species have been considered to play significant roles in H2/F2 reaction systems. In the present study, in order to obtain further understanding of the chain reaction mechanism in the combustion of mixtures containing H2 and F2, burning velocities for H2/F2/O2/N2 flames were measured and compared to that obtained from kinetic simulations using a detailed kinetic model, which involves the vibrationally excited species, HF(ν) and H2(ν), and the chain-branching reactions, HF(ν > 2) + F2 = HF + F + F (R1) and H2(ν = 1) + F2 = HF + H + F (R2). The results indicated that reaction R1 is not responsible for chain branching, whereas reaction R2 plays a dominant role in the chain reaction mechanism. The kinetic model reproduced the experimental burning velocities with the presumed rate constant of k2 = 6.6 × 10(-10) exp(-59 kJ mol(-1)/RT) cm(3) s(-1) for R2. The suggested chain-branching reaction was also investigated by quantum chemical calculations at the MRCI-F12+CV+Q/cc-pCVQZ-F12 level of theory.
Journal of Loss Prevention in The Process Industries | 2008
Toshio Mogi; Dongjoon Kim; Hiroumi Shiina; Sadashige Horiguchi
The Journal of Physical Chemistry | 1996
Hiroumi Shiina; Masaaki Oya; Koichi Yamashita; and Akira Miyoshi; Hiroyuki Matsui
Journal of Physical Chemistry A | 1998
Hiroumi Shiina; Akira Miyoshi; Hiroyuki Matsui
Bulletin of the Chemical Society of Japan | 1994
Masaaki Oya; Hiroumi Shiina; Kentaro Tsuchiya; Hiroyuki Matsui
Bulletin of the Chemical Society of Japan | 2014
Akira Matsugi; Hiroumi Shiina
Journal of Physical Chemistry A | 2014
Akira Matsugi; Hiroumi Shiina
Collaboration
Dive into the Hiroumi Shiina's collaboration.
National Institute of Advanced Industrial Science and Technology
View shared research outputsNational Institute of Advanced Industrial Science and Technology
View shared research outputsNational Institute of Advanced Industrial Science and Technology
View shared research outputsNational Institute of Advanced Industrial Science and Technology
View shared research outputsNational Institute of Advanced Industrial Science and Technology
View shared research outputs