Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroyuki Noji is active.

Publication


Featured researches published by Hiroyuki Noji.


Nature | 2001

Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase

Ryohei Yasuda; Hiroyuki Noji; Masasuke Yoshida; Kazuhiko Kinosita; Hiroyasu Itoh

The enzyme F1-ATPase has been shown to be a rotary motor in which the central γ-subunit rotates inside the cylinder made of α3β3 subunits. At low ATP concentrations, the motor rotates in discrete 120° steps, consistent with sequential ATP hydrolysis on the three β-subunits. The mechanism of stepping is unknown. Here we show by high-speed imaging that the 120° step consists of roughly 90° and 30° substeps, each taking only a fraction of a millisecond. ATP binding drives the 90° substep, and the 30° substep is probably driven by release of a hydrolysis product. The two substeps are separated by two reactions of about 1 ms, which together occupy most of the ATP hydrolysis cycle. This scheme probably applies to rotation at full speed (∼130 revolutions per second at saturating ATP) down to occasional stepping at nanomolar ATP concentrations, and supports the binding-change model for ATP synthesis by reverse rotation of F1-ATPase.


Cell | 1998

F1-ATPase Is a Highly Efficient Molecular Motor that Rotates with Discrete 120° Steps

Ryohei Yasuda; Hiroyuki Noji; Kazuhiko Kinosita; Masasuke Yoshida

A single molecule of F1-ATPase, a portion of ATP synthase, is by itself a rotary motor in which a central gamma subunit rotates against a surrounding cylinder made of alpha3beta3 subunits. Driven by three catalytic betas, each fueled with ATP, gamma makes discrete 120 degree steps, occasionally stepping backward. The work done in each step is constant over a broad range of imposed load and is close to the free energy of hydrolysis of one ATP molecule.


Journal of Biological Chemistry | 1998

Direct Observation of the Rotation of ε Subunit in F1-ATPase

Yasuyuki Kato-Yamada; Hiroyuki Noji; Ryohei Yasuda; Kazuhiko Kinosita; Masasuke Yoshida

Rotation of the ε subunit in F1-ATPase from thermophilic Bacillusstrain PS3 (TF1) was observed under a fluorescence microscope by the method used for observation of the γ subunit rotation (Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K., Jr. (1997) Nature 386, 299–302). The α3β3γε complex of TF1 was fixed to a solid surface, and fluorescently labeled actin filament was attached to the ε subunit through biotin-streptavidin. In the presence of ATP, the filament attached to ε subunit rotated in a unidirection. The direction of the rotation was the same as that observed for the γ subunit. The rotational velocity was slightly slower than the filament attached to the γ subunit, probably due to the experimental setup used. Thus, as suggested from biochemical studies (Aggeler, R., Ogilvie, I., and Capaldi, R. A. (1997)J. Biol. Chem. 272, 19621–19624), the ε subunit rotates with the γ subunit in F1-ATPase during catalysis.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators

Hiromi Imamura; Kim P. Huynh Nhat; Hiroko Togawa; Kenta Saito; Ryota Iino; Yasuyuki Kato-Yamada; Takeharu Nagai; Hiroyuki Noji

Adenosine 5′-triphosphate (ATP) is the major energy currency of cells and is involved in many cellular processes. However, there is no method for real-time monitoring of ATP levels inside individual living cells. To visualize ATP levels, we generated a series of fluorescence resonance energy transfer (FRET)-based indicators for ATP that were composed of the ε subunit of the bacterial FoF1-ATP synthase sandwiched by the cyan- and yellow-fluorescent proteins. The indicators, named ATeams, had apparent dissociation constants for ATP ranging from 7.4 μM to 3.3 mM. By targeting ATeams to different subcellular compartments, we unexpectedly found that ATP levels in the mitochondrial matrix of HeLa cells are significantly lower than those of cytoplasm and nucleus. We also succeeded in measuring changes in the ATP level inside single HeLa cells after treatment with inhibitors of glycolysis and/or oxidative phosphorylation, revealing that glycolysis is the major ATP-generating pathway of the cells grown in glucose-rich medium. This was also confirmed by an experiment using oligomycin A, an inhibitor of FoF1-ATP synthase. In addition, it was demonstrated that HeLa cells change ATP-generating pathway in response to changes of nutrition in the environment.


Nature | 2004

Mechanically driven ATP synthesis by F1-ATPase.

Hiroyasu Itoh; Akira Takahashi; Kengo Adachi; Hiroyuki Noji; Ryohei Yasuda; Masasuke Yoshida; Kazuhiko Kinosita

ATP, the main biological energy currency, is synthesized from ADP and inorganic phosphate by ATP synthase in an energy-requiring reaction. The F1 portion of ATP synthase, also known as F1-ATPase, functions as a rotary molecular motor: in vitro its γ-subunit rotates against the surrounding α3β3 subunits, hydrolysing ATP in three separate catalytic sites on the β-subunits. It is widely believed that reverse rotation of the γ-subunit, driven by proton flow through the associated Fo portion of ATP synthase, leads to ATP synthesis in biological systems. Here we present direct evidence for the chemical synthesis of ATP driven by mechanical energy. We attached a magnetic bead to the γ-subunit of isolated F1 on a glass surface, and rotated the bead using electrical magnets. Rotation in the appropriate direction resulted in the appearance of ATP in the medium as detected by the luciferase–luciferin reaction. This shows that a vectorial force (torque) working at one particular point on a protein machine can influence a chemical reaction occurring in physically remote catalytic sites, driving the reaction far from equilibrium.


Cell | 2007

Coupling of Rotation and Catalysis in F1-ATPase Revealed by Single-Molecule Imaging and Manipulation

Kengo Adachi; Kazuhiro Oiwa; Takayuki Nishizaka; Shou Furuike; Hiroyuki Noji; Hiroyasu Itoh; Masasuke Yoshida; Kazuhiko Kinosita

F(1)-ATPase is a rotary molecular motor that proceeds in 120 degrees steps, each driven by ATP hydrolysis. How the chemical reactions that occur in three catalytic sites are coupled to mechanical rotation is the central question. Here, we show by high-speed imaging of rotation in single molecules of F(1) that phosphate release drives the last 40 degrees of the 120 degrees step, and that the 40 degrees rotation accompanies reduction of the affinity for phosphate. We also show, by single-molecule imaging of a fluorescent ATP analog Cy3-ATP while F(1) is forced to rotate slowly, that release of Cy3-ADP occurs at approximately 240 degrees after it is bound as Cy3-ATP at 0 degrees . This and other results suggest that the affinity for ADP also decreases with rotation, and thus ADP release contributes part of energy for rotation. Together with previous results, the coupling scheme is now basically complete.


Nature | 2005

Highly coupled ATP synthesis by F1-ATPase single molecules

Yannick Rondelez; Guillaume Tresset; Takako Nakashima; Yasuyuki Kato-Yamada; Hiroyuki Fujita; Shoji Takeuchi; Hiroyuki Noji

F1-ATPase is the smallest known rotary motor, and it rotates in an anticlockwise direction as it hydrolyses ATP. Single-molecule experiments point towards three catalytic events per turn, in agreement with the molecular structure of the complex. The physiological function of F1 is ATP synthesis. In the ubiquitous F0F1 complex, this energetically uphill reaction is driven by F0, the partner motor of F1, which forces the backward (clockwise) rotation of F1, leading to ATP synthesis. Here, we have devised an experiment combining single-molecule manipulation and microfabrication techniques to measure the yield of this mechanochemical transformation. Single F1 molecules were enclosed in femtolitre-sized hermetic chambers and rotated in a clockwise direction using magnetic tweezers. When the magnetic field was switched off, the F1 molecule underwent anticlockwise rotation at a speed proportional to the amount of synthesized ATP. At 10 Hz, the mechanochemical coupling efficiency was low for the α3β3γ subcomplex (F1-ɛ), but reached up to 77% after reconstitution with the ɛ-subunit (F1+ɛ). We provide here direct evidence that F1 is designed to tightly couple its catalytic reactions with the mechanical rotation. Our results suggest that the ɛ-subunit has an essential function during ATP synthesis.


Nature Biotechnology | 2005

Microfabricated arrays of femtoliter chambers allow single molecule enzymology

Yannick Rondelez; Guillaume Tresset; Kazuhito V. Tabata; Hideyuki F. Arata; Hiroyuki Fujita; Shoji Takeuchi; Hiroyuki Noji

Precise understanding of biological functions requires tools comparable in size to the basic components of life. Single molecule studies have revealed molecular behaviors usually hidden in the ensemble- and time-averaging of bulk experiments. Although most such approaches rely on sophisticated optical strategies to limit the detection volume, another attractive approach is to perform the assay inside very small containers. We have developed a silicone device presenting a large array of micrometer-sized cavities. We used it to tightly enclose volumes of solution, as low as femtoliters, over long periods of time. The microchip insures that the chambers are uniform and precisely positioned. We demonstrated the feasibility of our approach by measuring the activity of single molecules of β-galactosidase and horseradish peroxidase. The approach should be of interest for many ultrasensitive bioassays at the single-molecule level.


Science | 2011

High-Speed Atomic Force Microscopy Reveals Rotary Catalysis of Rotorless F1-ATPase

Takayuki Uchihashi; Ryota Iino; Toshio Ando; Hiroyuki Noji

Intrinsic cooperativity drives cyclic propagation of conformational states in the stator ring of an adenosine triphosphate–driven rotary motor. F1 is an adenosine triphosphate (ATP)–driven motor in which three torque-generating β subunits in the α3β3 stator ring sequentially undergo conformational changes upon ATP hydrolysis to rotate the central shaft γ unidirectionally. Although extensive experimental and theoretical work has been done, the structural basis of cooperative torque generation to realize the unidirectional rotation remains elusive. We used high-speed atomic force microscopy to show that the rotorless F1 still “rotates”; in the isolated α3β3 stator ring, the three β subunits cyclically propagate conformational states in the counterclockwise direction, similar to the rotary shaft rotation in F1. The structural basis of unidirectionality is programmed in the stator ring. These findings have implications for cooperative interplay between subunits in other hexameric ATPases.


Nature Structural & Molecular Biology | 2004

Chemomechanical coupling in F1-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation.

Takayuki Nishizaka; Kazuhiro Oiwa; Hiroyuki Noji; Shigeki Kimura; Eiro Muneyuki; Masasuke Yoshida; Kazuhiko Kinosita

F1-ATPase is a rotary molecular motor in which unidirectional rotation of the central γ subunit is powered by ATP hydrolysis in three catalytic sites arranged 120° apart around γ. To study how hydrolysis reactions produce mechanical rotation, we observed rotation under an optical microscope to see which of the three sites bound and released a fluorescent ATP analog. Assuming that the analog mimics authentic ATP, the following scheme emerges: (i) in the ATP-waiting state, one site, dictated by the orientation of γ, is empty, whereas the other two bind a nucleotide; (ii) ATP binding to the empty site drives an ∼80° rotation of γ; (iii) this triggers a reaction(s), hydrolysis and/or phosphate release, but not ADP release in the site that bound ATP one step earlier; (iv) completion of this reaction induces further ∼40° rotation.

Collaboration


Dive into the Hiroyuki Noji's collaboration.

Top Co-Authors

Avatar

Ryota Iino

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masasuke Yoshida

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuhiko Kinosita

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Ueno

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Ken Yokoyama

Kyoto Sangyo University

View shared research outputs
Researchain Logo
Decentralizing Knowledge