Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hisako Ishimine is active.

Publication


Featured researches published by Hisako Ishimine.


Stem Cells and Development | 2013

Characterization of Human Adipose Tissue-Resident Hematopoietic Cell Populations Reveals a Novel Macrophage Subpopulation with CD34 Expression and Mesenchymal Multipotency

Hitomi Eto; Hisako Ishimine; Kahori Kinoshita; Kanako Watanabe-Susaki; Harunosuke Kato; Kentaro Doi; Shinichiro Kuno; Akira Kurisaki; Kotaro Yoshimura

Adipose tissue (AT) is composed of mature adipocytes and stromal vascular fraction (SVF) cells, including adipose stem/stromal cells (ASCs). We characterized hematopoietic cells residing in human nonobese AT by analyzing the SVF isolated from human lipoaspirates and peripheral blood (PB). Flow cytometry revealed that AT-resident hematopoietic cells consisted of AT-resident macrophages (ATMs) or lymphocytes with a negligible number of granulocytes. AT-resident lymphocytes were composed of helper T cells and natural killer cells. Almost no B cells and few cytotoxic T cells were observed in nonobese AT. More than 90% of ATMs were M2 state CD206(+) macrophages (CD45(+)/CD14(+)) that were located in the periendothelium or interstitial spaces between adipocytes. We also discovered a novel subpopulation of CD34(+)/CD206(+) ATMs (11.1% of CD206(+)ATMs) that localized in the perivascular region. Microarray of noncultured CD34(+)/CD206(+) ATMs, CD34(-)/CD206(+) ATMs, CD45(-)/CD31(-)/CD34(+) ASCs, and PB-derived circulating monocytes revealed that CD34(+)/CD206(+) ATMs shared characteristics with ASCs and circulating monocytes. Unlike CD34(-)/CD206(+) ATMs, CD34(+)/CD206(+) ATMs could grow in adherent culture and were capable of differentiating into multiple mesenchymal (adipogenic, osteogenic, and chondrogenic) lineages, similar to ASCs. CD34(+)/CD206(+) ATMs grew rapidly and lost expression of CD45, CD14, and CD206 by passage 3, which resulted in a similar expression profile to ASCs. Thus, this novel ATM subpopulation (CD45(+)/CD14(+)/CD34(+)/CD206(+)) showed distinct biological properties from other ATMs and circulating monocytes/macrophages. The CD34(+)/CD206(+) ATMs possessed characteristics similar to ASCs, including adherence, localization, morphology, and mesenchymal multipotency. This AT-resident subpopulation may have migrated from the bone marrow and may be important to tissue maintenance and remolding.


Stem Cells Translational Medicine | 2015

Therapeutic Potential of Adipose-Derived SSEA-3-Positive Muse Cells for Treating Diabetic Skin Ulcers

Kahori Kinoshita; Shinichiro Kuno; Hisako Ishimine; Noriyuki Aoi; Kazuhide Mineda; Harunosuke Kato; Kentaro Doi; Koji Kanayama; Jingwei Feng; Takanobu Mashiko; Akira Kurisaki; Kotaro Yoshimura

Stage‐specific embryonic antigen‐3 (SSEA‐3)‐positive multipotent mesenchymal cells (multilineage differentiating stress‐enduring [Muse] cells) were isolated from cultured human adipose tissue‐derived stem/stromal cells (hASCs) and characterized, and their therapeutic potential for treating diabetic skin ulcers was evaluated. Cultured hASCs were separated using magnetic‐activated cell sorting into positive and negative fractions, a SSEA‐3+ cell‐enriched fraction (Muse‐rich) and the remaining fraction (Muse‐poor). Muse‐rich hASCs showed upregulated and downregulated pluripotency and cell proliferation genes, respectively, compared with Muse‐poor hASCs. These cells also released higher amounts of certain growth factors, particularly under hypoxic conditions, compared with Muse‐poor cells. Skin ulcers were generated in severe combined immunodeficiency (SCID) mice with type 1 diabetes, which showed delayed wound healing compared with nondiabetic SCID mice. Treatment with Muse‐rich cells significantly accelerated wound healing compared with treatment with Muse‐poor cells. Transplanted cells were integrated into the regenerated dermis as vascular endothelial cells and other cells. However, they were not detected in the surrounding intact regions. Thus, the selected population of ASCs has greater therapeutic effects to accelerate impaired wound healing associated with type 1 diabetes. These cells can be achieved in large amounts with minimal morbidity and could be a practical tool for a variety of stem cell‐depleted or ischemic conditions of various organs and tissues.


Stem Cells | 2014

Biosynthesis of Ribosomal RNA in Nucleoli Regulates Pluripotency and Differentiation Ability of Pluripotent Stem Cells

Kanako Watanabe-Susaki; Hitomi Takada; Kei Enomoto; Kyoko Miwata; Hisako Ishimine; Atsushi Intoh; Manami Ohtaka; Mahito Nakanishi; Hiromu Sugino; Makoto Asashima; Akira Kurisaki

Pluripotent stem cells have been shown to have unique nuclear properties, for example, hyperdynamic chromatin and large, condensed nucleoli. However, the contribution of the latter unique nucleolar character to pluripotency has not been well understood. Here, we show that fibrillarin (FBL), a critical methyltransferase for ribosomal RNA (rRNA) processing in nucleoli, is one of the proteins highly expressed in pluripotent embryonic stem (ES) cells. Stable expression of FBL in ES cells prolonged the pluripotent state of mouse ES cells cultured in the absence of leukemia inhibitory factor (LIF). Analyses using deletion mutants and a point mutant revealed that the methyltransferase activity of FBL regulates stem cell pluripotency. Knockdown of this gene led to significant delays in rRNA processing, growth inhibition, and apoptosis in mouse ES cells. Interestingly, both partial knockdown of FBL and treatment with actinomycin D, an inhibitor of rRNA synthesis, induced the expression of differentiation markers in the presence of LIF and promoted stem cell differentiation into neuronal lineages. Moreover, we identified p53 signaling as the regulatory pathway for pluripotency and differentiation of ES cells. These results suggest that proper activity of rRNA production in nucleoli is a novel factor for the regulation of pluripotency and differentiation ability of ES cells. Stem Cells 2014;32:3099–3111


Stem Cells Translational Medicine | 2015

Therapeutic Potential of Human Adipose-Derived Stem/Stromal Cell Microspheroids Prepared by Three-Dimensional Culture in Non-Cross-Linked Hyaluronic Acid Gel

Kazuhide Mineda; Jingwei Feng; Hisako Ishimine; Hitomi Takada; Kentaro Doi; Shinichiro Kuno; Kahori Kinoshita; Koji Kanayama; Harunosuke Kato; Takanobu Mashiko; Ichiro Hashimoto; Hideki Nakanishi; Akira Kurisaki; Kotaro Yoshimura

Three‐dimensional culture of mesenchymal stem/stromal cells for spheroid formation is known to enhance their therapeutic potential for regenerative medicine. Spheroids were prepared by culturing human adipose‐derived stem/stromal cells (hASCs) in a non‐cross‐linked hyaluronic acid (HA) gel and compared with dissociated hASCs and hASC spheroids prepared using a nonadherent dish. Preliminary experiments indicated that a 4% HA gel was the most appropriate for forming hASC spheroids with a relatively consistent size (20–50 µm) within 48 hours. Prepared spheroids were positive for pluripotency markers (NANOG, OCT3/4, and SOX‐2), and 40% of the cells were SSEA‐3‐positive, a marker of the multilineage differentiating stress enduring or Muse cell. In contrast with dissociated ASCs, increased secretion of cytokines such as hepatocyte growth factor was detected in ASC spheroids cultured under hypoxia. On microarray ASC spheroids showed upregulation of some pluripotency markers and downregulation of genes related to the mitotic cell cycle. After ischemia‐reperfusion injury to the fat pad in SCID mice, local injection of hASC spheroids promoted tissue repair and reduced the final atrophy (1.6%) compared with that of dissociated hASCs (14.3%) or phosphate‐buffered saline (20.3%). Part of the administered hASCs differentiated into vascular endothelial cells. ASC spheroids prepared in a HA gel contain undifferentiated cells with therapeutic potential to promote angiogenesis and tissue regeneration after damage.


Biochemical and Biophysical Research Communications | 2013

N-Cadherin is a prospective cell surface marker of human mesenchymal stem cells that have high ability for cardiomyocyte differentiation

Hisako Ishimine; Norio Yamakawa; Mari Sasao; Mika Tadokoro; Daisuke Kami; Shinji Komazaki; Makoto Tokuhara; Hitomi Takada; Yoshimasa Ito; Shinichiro Kuno; Kotaro Yoshimura; Akihiro Umezawa; Hajime Ohgushi; Makoto Asashima; Akira Kurisaki

Mesenchymal stem cells (MSCs) are among the most promising sources of stem cells for regenerative medicine. However, the range of their differentiation ability is very limited. In this study, we explored prospective cell surface markers of human MSCs that readily differentiate into cardiomyocytes. When the cardiomyogenic differentiation potential and the expression of cell surface markers involved in heart development were analyzed using various immortalized human MSC lines, the MSCs with high expression of N-cadherin showed a higher probability of differentiation into beating cardiomyocytes. The differentiated cardiomyocytes expressed terminally differentiated cardiomyocyte-specific markers such as α-actinin, cardiac troponin T, and connexin-43. A similar correlation was observed with primary human MSCs derived from bone marrow and adipose tissue. Moreover, N-cadherin-positive MSCs isolated with N-cadherin antibody-conjugated magnetic beads showed an apparently higher ability to differentiate into cardiomyocytes than the N-cadherin-negative population. Quantitative polymerase chain reaction analyses demonstrated that the N-cadherin-positive population expressed significantly elevated levels of cardiomyogenic progenitor-specific transcription factors, including Nkx2.5, Hand1, and GATA4 mRNAs. Our results suggest that N-cadherin is a novel prospective cell surface marker of human MSCs that show a better ability for cardiomyocyte differentiation.


PLOS ONE | 2014

Prohibitin 2 Regulates the Proliferation and Lineage-Specific Differentiation of Mouse Embryonic Stem Cells in Mitochondria

Megumi Kowno; Kanako Watanabe-Susaki; Hisako Ishimine; Shinji Komazaki; Kei Enomoto; Yasuhiro Seki; Ying Ying Wang; Yohei Ishigaki; Naoto Ninomiya; Taka-aki K. Noguchi; Yuko Kokubu; Keigoh Ohnishi; Yoshiro Nakajima; Kaoru Kato; Atsushi Intoh; Hitomi Takada; Norio Yamakawa; Pi-Chao Wang; Makoto Asashima; Akira Kurisaki

Background The pluripotent state of embryonic stem (ES) cells is controlled by a network of specific transcription factors. Recent studies also suggested the significant contribution of mitochondria on the regulation of pluripotent stem cells. However, the molecules involved in these regulations are still unknown. Methodology/Principal Findings In this study, we found that prohibitin 2 (PHB2), a pleiotrophic factor mainly localized in mitochondria, is a crucial regulatory factor for the homeostasis and differentiation of ES cells. PHB2 was highly expressed in undifferentiated mouse ES cells, and the expression was decreased during the differentiation of ES cells. Knockdown of PHB2 induced significant apoptosis in pluripotent ES cells, whereas enhanced expression of PHB2 contributed to the proliferation of ES cells. However, enhanced expression of PHB2 strongly inhibited ES cell differentiation into neuronal and endodermal cells. Interestingly, only PHB2 with intact mitochondrial targeting signal showed these specific effects on ES cells. Moreover, overexpression of PHB2 enhanced the processing of a dynamin-like GTPase (OPA1) that regulates mitochondrial fusion and cristae remodeling, which could induce partial dysfunction of mitochondria. Conclusions/Significance Our results suggest that PHB2 is a crucial mitochondrial regulator for homeostasis and lineage-specific differentiation of ES cells.


Biochemical and Biophysical Research Communications | 2014

Lipase member H is a novel secreted protein selectively upregulated in human lung adenocarcinomas and bronchioloalveolar carcinomas

Yasuhiro Seki; Yukihiro Yoshida; Hisako Ishimine; Aya Shinozaki-Ushiku; Yoshimasa Ito; Kenya Sumitomo; Jun Nakajima; Masashi Fukayama; Tatsuo Michiue; Makoto Asashima; Akira Kurisaki

Lung cancer is one of the most frequent causes of cancer-related death worldwide. However, molecular markers for lung cancer have not been well established. To identify novel genes related to lung cancer development, we surveyed publicly available DNA microarray data on lung cancer tissues. We identified lipase member H (LIPH, also known as mPA-PLA1) as one of the significantly upregulated genes in lung adenocarcinoma. LIPH was expressed in several adenocarcinoma cell lines when they were analyzed by quantitative real-time polymerase chain reaction (qPCR), western blotting, and sandwich enzyme-linked immunosorbent assay (ELISA). Immunohistochemical analysis detected LIPH expression in most of the adenocarcinomas and bronchioloalveolar carcinomas tissue sections obtained from lung cancer patients. LIPH expression was also observed less frequently in the squamous lung cancer tissue samples. Furthermore, LIPH protein was upregulated in the serum of early- and late-phase lung cancer patients when they were analyzed by ELISA. Interestingly, high serum level of LIPH was correlated with better survival in early phase lung cancer patients after surgery. Thus, LIPH may be a novel molecular biomarker for lung cancer, especially for adenocarcinoma and bronchioloalveolar carcinoma.


Experimental Animals | 2016

Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies

Miki Shimbo; Takashi Kudo; Michito Hamada; Hyojung Jeon; Yuki Imamura; Keigo Asano; Risa Okada; Yuki Tsunakawa; Seiya Mizuno; Ken-ichi Yagami; Chihiro Ishikawa; Haiyan Li; Takashi Shiga; Junji Ishida; Juri Hamada; Kazuya Murata; Tomohiro Ishimaru; Misuzu Hashimoto; Akiyoshi Fukamizu; Mutsumi Yamane; Masahito Ikawa; Hironobu Morita; Masahiro Shinohara; Hiroshi Asahara; Taishin Akiyama; Nobuko Akiyama; Hiroki Sasanuma; Nobuaki Yoshida; Rui Zhou; Ying-Ying Wang

The Japan Aerospace Exploration Agency developed the mouse Habitat Cage Unit (HCU) for installation in the Cell Biology Experiment Facility (CBEF) onboard the Japanese Experimental Module (“Kibo”) on the International Space Station. The CBEF provides “space-based controls” by generating artificial gravity in the HCU through a centrifuge, enabling a comparison of the biological consequences of microgravity and artificial gravity of 1 g on mice housed in space. Therefore, prior to the space experiment, a ground-based study to validate the habitability of the HCU is necessary to conduct space experiments using the HCU in the CBEF. Here, we investigated the ground-based effect of a 32-day housing period in the HCU breadboard model on male mice in comparison with the control cage mice. Morphology of skeletal muscle, the thymus, heart, and kidney, and the sperm function showed no critical abnormalities between the control mice and HCU mice. Slight but significant changes caused by the HCU itself were observed, including decreased body weight, increased weights of the thymus and gastrocnemius, reduced thickness of cortical bone of the femur, and several gene expressions from 11 tissues. Results suggest that the HCU provides acceptable conditions for mouse phenotypic analysis using CBEF in space, as long as its characteristic features are considered. Thus, the HCU is a feasible device for future space experiments.


Cells Tissues Organs | 2014

Cell and Tissue Damage after Skin Exposure to Ionizing Radiation: Short- and Long-Term Effects after a Single and Fractional Doses

Kahori Kinoshita; Hisako Ishimine; Kenshiro Shiraishi; Harunosuke Kato; Kentaro Doi; Shinichiro Kuno; Koji Kanayama; Kazuhide Mineda; Takanobu Mashiko; Jingwei Feng; Keiichi Nakagawa; Akira Kurisaki; Satoshi Itami; Kotaro Yoshimura

Ionizing radiation is often used to treat progressive neoplasms. However, the consequences of long-term radiation exposure to healthy skin tissue are poorly understood. We aimed to evaluate the short- and long-term radiation damage to healthy skin of the same irradiation given either as single or fractional doses. C57BL/J6 mice were randomly assigned to one of three groups: a control and two exposure groups (5 Gy ×2 or 10 Gy ×1). The inguinal area was irradiated (6-MeV beam) 1 week after depilation in the treatment groups. Skin samples were evaluated macroscopically and histologically for up to 6 months after the final exposure. After anagen hair follicle injury by irradiation, hair cycling resumed in both groups, but hair graying was observed in the 10 Gy ×1 group but not in the 5 Gy ×2 group, suggesting the dose of each fractional exposure is more relevant to melanocyte stem cell damage than the total dose. On the other hand, in the long term, the fractional double exposures induced more severe atrophy and capillary reduction in the dermis and subcutis, suggesting fractional exposure may cause more depletion of tissue stem cells and endothelial cells in the tissue. Thus, our results indicated that there were differences between the degrees of damage that occurred as a result of a single exposure compared with fractional exposures to ionizing radiation: the former induces more severe acute injury to the skin with irreversible depigmentation of hairs, while the latter induces long-term damage to the dermis and subcutis.


Tumor Biology | 2016

Lipase member H frequently overexpressed in human esophageal adenocarcinomas.

Hisako Ishimine; Rui Zhou; Kenya Sumitomo; Yoshimasa Ito; Yasuhiro Seki; Yukihiro Yoshida; Akira Kurisaki

Esophageal cancer is one of the most frequent causes of cancer-related deaths worldwide. This is due to its asymptomatic nature or mild nonspecific symptoms. Most patients are diagnosed after appearance of prominent symptoms, and tumors are frequently accompanied by severe infiltration. Therefore, molecular biomarkers for the prognosis of early-stage esophageal cancer are desired. In this study, we examined the prognostic potential of lipase H (LIPH), a recently reported biomarker for lung adenocarcinoma and squamous carcinoma. We found that LIPH mRNA is also frequently upregulated in esophageal adenocarcinoma. Immunohistochemical analysis confirmed LIPH protein expression in various esophageal tumor tissue sections. Interestingly, higher expression of LIPH in esophageal adenocarcinoma showed a positive correlation with longer survival of patients. Our data suggest that LIPH may have prognostic value for esophageal cancer.

Collaboration


Dive into the Hisako Ishimine's collaboration.

Top Co-Authors

Avatar

Akira Kurisaki

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Makoto Asashima

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hitomi Takada

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kanako Watanabe-Susaki

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge