Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Makoto Asashima is active.

Publication


Featured researches published by Makoto Asashima.


Cell | 2005

Maternal Wnt11 Activates the Canonical Wnt Signaling Pathway Required for Axis Formation in Xenopus Embryos

Qinghua Tao; Chika Yokota; Helbert Puck; Matt Kofron; Bilge Birsoy; Dong Yan; Makoto Asashima; Christopher Wylie; Xinhua Lin; Janet Heasman

Wnt signaling pathways play essential roles in patterning and proliferation of embryonic and adult tissues. In many organisms, this signaling pathway directs axis formation. Although the importance of intracellular components of the pathway, including beta-catenin and Tcf3, has been established, the mechanism of their activation is uncertain. In Xenopus, the initiating signal that localizes beta-catenin to dorsal nuclei has been suggested to be intracellular and Wnt independent. Here, we provide three lines of evidence that the pathway specifying the dorsal axis is activated extracellularly in Xenopus embryos. First, we identify Wnt11 as the initiating signal. Second, we show that activation requires the glycosyl transferase X.EXT1. Third, we find that the EGF-CFC protein, FRL1, is also essential and interacts with Wnt11 to activate canonical Wnt signaling.


Nature Neuroscience | 2009

Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis

Tomoko Kuwabara; Jenny Hsieh; Alysson R. Muotri; G. K. Yeo; Masaki Warashina; Dieter Chichung Lie; Lynne Moore; Kinichi Nakashima; Makoto Asashima; Fred H. Gage

In adult hippocampus, new neurons are continuously generated from neural stem cells (NSCs), but the molecular mechanisms regulating adult neurogenesis remain elusive. We found that Wnt signaling, together with the removal of Sox2, triggered the expression of NeuroD1 in mice. This transcriptional regulatory mechanism was dependent on a DNA element containing overlapping Sox2 and T-cell factor/lymphoid enhancer factor (TCF/LEF)-binding sites (Sox/LEF) in the promoter. Notably, Sox/LEF sites were also found in long interspersed nuclear element 1 (LINE-1) elements, consistent with their critical roles in the transition of NSCs to proliferating neuronal progenitors. Our results describe a previously unknown Wnt-mediated regulatory mechanism that simultaneously coordinates activation of NeuroD1 and LINE-1, which is important for adult neurogenesis and survival of neuronal progenitors. Moreover, the discovery that LINE-1 retro-elements embedded in the mammalian genome can function as bi-directional promoters suggests that Sox/LEF regulatory sites may represent a general mechanism, at least in part, for relaying environmental signals to other nearby loci to promote adult hippocampal neurogenesis.


Development Genes and Evolution | 1990

Mesodermal induction in early amphibian embryos by activin A (erythroid differentiation factor)

Makoto Asashima; Hiroshi Nakano; Shimada K; Kei Kinoshita; Koichi Ishii; Hiroshiro Shibai; Naoto Ueno

SummaryRecently the mesoderm-inducing effects of the transforming growth factor β (TGF-β) family of proteins have been widely examined. In an attemt to elucidate the functions of these proteins, porcine inhibin A and activin A (erythroid differentiation factor; EDF) were examined. Treatment of explants with activin A led to differentiation of mesodermal derivatives such as mesenchyme, notochord, blood cells and muscle, but inhibin A had a much lesser effect. The mesodermal differentiation induced by activin A was also comfirmed by analyses using a polyclonal antibody against muscle myosin. By indirect immunofluorescence analysis, the differentiation of muscle blocks was observed in the activin-A-treated explants, whereas no differentiation was observed in inhibin-A-treated and control explants. These findings confirm that this protein of the TGF-β family has mesoderm-inducing ability.


Nature Cell Biology | 2006

The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt-β-catenin signalling through Dishevelled

Yosuke Funato; Tatsuo Michiue; Makoto Asashima; Hiroaki Miki

Dishevelled (Dvl) transduces signals from the Wnt receptor, Frizzled, to downstream components, leading to the stabilization of β-catenin and subsequent activation of the transcription factor T cell factor (TCF) and/or lymphoid enchancer factor (LEF). However, the mechanism of Dvl action remains unclear. Here, we report that nucleoredoxin (NRX), a thioredoxin (TRX) family protein, interacts with Dvl. Overexpression of NRX selectively suppresses the Wnt–β-catenin pathway and ablation of NRX by RNA-interference (RNAi) results in activation of TCF, accelerated cell proliferation and enhancement of oncogenicity through cooperation with mitogen-activated extracellular signal regulated kinase kinase (MEK) or Ras. We find that cells respond to H2O2 stimulation by activating TCF. Redox-dependent activation of the Wnt–β-catenin pathway occurs independently of extracellular Wnts and is impaired by RNAi of NRX . In addition, association between Dvl and NRX is inhibited by H2O2 treatment. These data suggest a relationship between the Wnt–β-catenin pathway and redox signalling through redox-sensitive association of NRX with Dvl.


Development | 2006

The murine homolog of SALL4, a causative gene in Okihiro syndrome, is essential for embryonic stem cell proliferation, and cooperates with Sall1 in anorectal, heart, brain and kidney development

Masayo Sakaki-Yumoto; Chiyoko Kobayashi; Akira Sato; Sayoko Fujimura; Yuko Matsumoto; Minoru Takasato; Tatsuhiko Kodama; Hiroyuki Aburatani; Makoto Asashima; Nobuaki Yoshida; Ryuichi Nishinakamura

Mutations in SALL4, the human homolog of the Drosophila homeotic gene spalt (sal), cause the autosomal dominant disorder known as Okihiro syndrome. In this study, we show that a targeted null mutation in the mouse Sall4 gene leads to lethality during peri-implantation. Growth of the inner cell mass from the knockout blastocysts was reduced, and Sall4-null embryonic stem (ES) cells proliferated poorly with no aberrant differentiation. Furthermore, we demonstrated that anorectal and heart anomalies in Okihiro syndrome are caused by Sall4 haploinsufficiency and that Sall4/Sall1 heterozygotes exhibited an increased incidence of anorectal and heart anomalies, exencephaly and kidney agenesis. Sall4 and Sall1 formed heterodimers, and a truncated Sall1 caused mislocalization of Sall4 in the heterochromatin; thus, some symptoms of Townes-Brocks syndrome caused by SALL1 truncations could result from SALL4 inhibition.


Molecular and Cellular Biology | 1998

Axil, a Member of the Axin Family, Interacts with Both Glycogen Synthase Kinase 3β and β-Catenin and Inhibits Axis Formation of Xenopus Embryos

Hideki Yamamoto; Shosei Kishida; Takaaki Uochi; Satoshi Ikeda; Shinya Koyama; Makoto Asashima; Akira Kikuchi

ABSTRACT Using a yeast two-hybrid method, we identified a novel protein which interacts with glycogen synthase kinase 3β (GSK-3β). This protein had 44% amino acid identity with Axin, a negative regulator of the Wnt signaling pathway.We designated this protein Axil for Axin like. Like Axin, Axil ventralized Xenopus embryos and inhibited Xwnt8-induced Xenopus axis duplication. Axil was phosphorylated by GSK-3β. Axil bound not only to GSK-3β but also to β-catenin, and the GSK-3β-binding site of Axil was distinct from the β-catenin-binding site. Furthermore, Axil enhanced GSK-3β-dependent phosphorylation of β-catenin. These results indicate that Axil negatively regulates the Wnt signaling pathway by mediating GSK-3β-dependent phosphorylation of β-catenin, thereby inhibiting axis formation.


Journal of Biological Chemistry | 2011

Development of Defective and Persistent Sendai Virus Vector A UNIQUE GENE DELIVERY/EXPRESSION SYSTEM IDEAL FOR CELL REPROGRAMMING

Ken Nishimura; Masayuki Sano; Manami Ohtaka; Birei Furuta; Yoko Umemura; Yoshiro Nakajima; Yuzuru Ikehara; Toshihiro Kobayashi; Hiroaki Segawa; Satoko Takayasu; Hideyuki Sato; Kaori Motomura; Eriko Uchida; Toshie Kanayasu-Toyoda; Makoto Asashima; Hiromitsu Nakauchi; Teruhide Yamaguchi; Mahito Nakanishi

The ectopic expression of transcription factors can reprogram differentiated tissue cells into induced pluripotent stem cells. However, this is a slow and inefficient process, depending on the simultaneous delivery of multiple genes encoding essential reprogramming factors and on their sustained expression in target cells. Moreover, once cell reprogramming is accomplished, these exogenous reprogramming factors should be replaced with their endogenous counterparts for establishing autoregulated pluripotency. Complete and designed removal of the exogenous genes from the reprogrammed cells would be an ideal option for satisfying this latter requisite as well as for minimizing the risk of malignant cell transformation. However, no single gene delivery/expression system has ever been equipped with these contradictory characteristics. Here we report the development of a novel replication-defective and persistent Sendai virus (SeVdp) vector based on a noncytopathic variant virus, which fulfills all of these requirements for cell reprogramming. The SeVdp vector could accommodate up to four exogenous genes, deliver them efficiently into various mammalian cells (including primary tissue cells and human hematopoietic stem cells) and express them stably in the cytoplasm at a prefixed balance. Furthermore, interfering with viral transcription/replication using siRNA could erase the genomic RNA of SeVdp vector from the target cells quickly and thoroughly. A SeVdp vector installed with Oct4/Sox2/Klf4/c-Myc could reprogram mouse primary fibroblasts quite efficiently; ∼1% of the cells were reprogrammed to Nanog-positive induced pluripotent stem cells without chromosomal gene integration. Thus, this SeVdp vector has potential as a tool for advanced cell reprogramming and for stem cell research.


Nature | 2016

Genome evolution in the allotetraploid frog Xenopus laevis

Adam Session; Yoshinobu Uno; Taejoon Kwon; Jarrod Chapman; Atsushi Toyoda; Shuji Takahashi; Akimasa Fukui; Akira Hikosaka; Atsushi Suzuki; Mariko Kondo; Simon J. van Heeringen; Ian Quigley; Sven Heinz; Hajime Ogino; Haruki Ochi; Uffe Hellsten; Jessica B. Lyons; Oleg Simakov; Nicholas H. Putnam; Jonathan Stites; Yoko Kuroki; Toshiaki Tanaka; Tatsuo Michiue; Minoru Watanabe; Ozren Bogdanović; Ryan Lister; Georgios Georgiou; Sarita S. Paranjpe; Ila van Kruijsbergen; Shengquiang Shu

To explore the origins and consequences of tetraploidy in the African clawed frog, we sequenced the Xenopus laevis genome and compared it to the related diploid X. tropicalis genome. We characterize the allotetraploid origin of X. laevis by partitioning its genome into two homoeologous subgenomes, marked by distinct families of ‘fossil’ transposable elements. On the basis of the activity of these elements and the age of hundreds of unitary pseudogenes, we estimate that the two diploid progenitor species diverged around 34 million years ago (Ma) and combined to form an allotetraploid around 17–18 Ma. More than 56% of all genes were retained in two homoeologous copies. Protein function, gene expression, and the amount of conserved flanking sequence all correlate with retention rates. The subgenomes have evolved asymmetrically, with one chromosome set more often preserving the ancestral state and the other experiencing more gene loss, deletion, rearrangement, and reduced gene expression.


Stem Cells | 2007

Integrins Regulate Mouse Embryonic Stem Cell Self-Renewal

Yohei Hayashi; Miho Furue; Tetsuji Okamoto; Kiyoshi Ohnuma; Yasufumi Myoishi; Yasuaki Fukuhara; Takanori Abe; J. Denry Sato; Ryu-Ichiro Hata; Makoto Asashima

Extracellular matrix (ECM) components regulate stem‐cell behavior, although the exact effects elicited in embryonic stem (ES) cells are poorly understood. We previously developed a simple, defined, serum‐free culture medium that contains leukemia inhibitory factor (LIF) for propagating pluripotent mouse embryonic stem (mES) cells in the absence of feeder cells. In this study, we determined the effects of ECM components as culture substrata on mES cell self‐renewal in this culture medium, comparing conventional culture conditions that contain serum and LIF with gelatin as a culture substratum. mES cells remained undifferentiated when cultured on type I and type IV collagen or poly‐d‐lysine. However, they differentiated when cultured on laminin or fibronectin as indicated by altered morphologies, the activity of alkaline phosphatase decreased, Fgf5 expression increased, and Nanog and stage‐specific embryonic antigen 1 expression decreased. Under these conditions, the activity of signal transducer and activator of transcription (STAT)3 and Akt/protein kinase B (PKB), which maintain cell self‐renewal, decreased. In contrast, the extracellular signal‐regulated kinase (ERK)1/2 activity, which negatively controls cell self‐renewal, increased. In the defined conditions, mES cells did not express collagen‐binding integrin subunits, but they expressed laminin‐ and fibronectin‐binding integrin subunits. The expression of some collagen‐binding integrin subunits was downregulated in an LIF concentration‐dependent manner. Blocking the interactions between ECM and integrins inhibited this differentiation. Conversely, the stimulation of ECM‐integrin interactions by overexpressing collagen‐binding integrin subunits induced differentiation of mES cells cultured on type I collagen. The results of the study indicated that inactivation of the integrin signaling is crucial in promoting mouse embryonic stem cell self‐renewal.


The EMBO Journal | 1997

Conversion of ectoderm into a neural fate by ATH‐3, a vertebrate basic helix–loop–helix gene homologous to Drosophila proneural gene atonal

Koichi Takebayashi; Shuji Takahashi; Chika Yokota; Hiroshi Tsuda; Shigetada Nakanishi; Makoto Asashima; Ryoichiro Kageyama

We have isolated a novel basic helix–loop–helix (bHLH) gene homologous to the Drosophila proneural gene atonal, termed ATH‐3, from Xenopus and mouse. ATH‐3 is expressed in the developing nervous system, with high levels of expression in the brain, retina and cranial ganglions. Injection of ATH‐3 RNA into Xenopus embryos dramatically expands the neural tube and induces ectopic neural tissues in the epidermis but inhibits non‐neural development. This ATH‐3‐induced neural hyperplasia does not require cell division, indicating that surrounding cells which are normally non‐neural types adopt a neural fate. In a Xenopus animal cap assay, ATH‐3 is able to convert ectodermal cells into neurons expressing anterior markers without inducing mesoderm. Interestingly, a single amino acid change from Ser to Asp in the basic region, which mimics phosphorylation of Ser, severely impairs the anterior marker‐inducing ability without affecting general neurogenic activities. These results provide evidence that ATH‐3 can directly convert non‐neural or undetermined cells into a neural fate, and suggest that the Ser residue in the basic region may be critical for the regulation of ATH‐3 activity by phosphorylation.

Collaboration


Dive into the Makoto Asashima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuzuru Ito

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasuko Onuma

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shinji Komazaki

Saitama Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kiyoshi Ohnuma

Nagaoka University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge