Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hitoshi Nakatogawa is active.

Publication


Featured researches published by Hitoshi Nakatogawa.


Nature Reviews Molecular Cell Biology | 2009

Dynamics and diversity in autophagy mechanisms: lessons from yeast

Hitoshi Nakatogawa; Kuninori Suzuki; Yoshiaki Kamada; Yoshinori Ohsumi

Autophagy is a fundamental function of eukaryotic cells and is well conserved from yeast to humans. The most remarkable feature of autophagy is the synthesis of double membrane-bound compartments that sequester materials to be degraded in lytic compartments, a process that seems to be mechanistically distinct from conventional membrane traffic. The discovery of autophagy in yeast and the genetic tractability of this organism have allowed us to identify genes that are responsible for this process, which has led to the explosive growth of this research field seen today. Analyses of autophagy-related (Atg) proteins have unveiled dynamic and diverse aspects of mechanisms that underlie membrane formation during autophagy.


Cell | 2007

Atg8, a Ubiquitin-like Protein Required for Autophagosome Formation, Mediates Membrane Tethering and Hemifusion

Hitoshi Nakatogawa; Yoshinobu Ichimura; Yoshinori Ohsumi

Autophagy involves de novo formation of double membrane-bound structures called autophagosomes, which engulf material to be degraded in lytic compartments. Atg8 is a ubiquitin-like protein required for this process in Saccharomyces cerevisiae that can be conjugated to the lipid phosphatidylethanolamine by a ubiquitin-like system. Here, we show using an in vitro system that Atg8 mediates the tethering and hemifusion of membranes, which are evoked by the lipidation of the protein and reversibly modulated by the deconjugation enzyme Atg4. Mutational analyses suggest that membrane tethering and hemifusion observed in vitro represent an authentic function of Atg8 in autophagosome formation in vivo. In addition, electron microscopic analyses indicate that these functions of Atg8 are involved in the expansion of autophagosomal membranes. Our results provide further insights into the mechanisms underlying the unique membrane dynamics of autophagy and also indicate the functional versatility of ubiquitin-like proteins.


Genes to Cells | 2008

Structural basis of target recognition by Atg8/LC3 during selective autophagy

Nobuo N. Noda; Hiroyuki Kumeta; Hitoshi Nakatogawa; Kenji Satoo; Wakana Adachi; Junko Ishii; Yuko Fujioka; Yoshinori Ohsumi; Fuyuhiko Inagaki

Autophagy is a non‐selective bulk degradation process in which isolation membranes enclose a portion of cytoplasm to form double‐membrane vesicles, called autophagosomes, and deliver their inner constituents to the lytic compartments. Recent studies have also shed light on another mode of autophagy that selectively degrades various targets. Yeast Atg8 and its mammalian homologue LC3 are ubiquitin‐like modifiers that are localized on isolation membranes and play crucial roles in the formation of autophagosomes. These proteins are also involved in selective incorporation of specific cargo molecules into autophagosomes, in which Atg8 and LC3 interact with Atg19 and p62, receptor proteins for vacuolar enzymes and disease‐related protein aggregates, respectively. Using X‐ray crystallography and NMR, we herein report the structural basis for Atg8–Atg19 and LC3–p62 interactions. Remarkably, Atg8 and LC3 were shown to interact with Atg19 and p62, respectively, in a quite similar manner: they recognized the side‐chains of Trp and Leu in a four‐amino acid motif, WXXL, in Atg19 and p62 using hydrophobic pockets conserved among Atg8 homologues. Together with mutational analyses, our results show the fundamental mechanism that allows Atg8 homologues, in association with WXXL‐containing proteins, to capture specific cargo molecules, thereby endowing isolation membranes and/or their assembly machineries with target selectivity.


Nature | 2015

Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus

Keisuke Mochida; Yu Oikawa; Yayoi Kimura; Hiromi Kirisako; Hisashi Hirano; Yoshinori Ohsumi; Hitoshi Nakatogawa

Macroautophagy (hereafter referred to as autophagy) degrades various intracellular constituents to regulate a wide range of cellular functions, and is also closely linked to several human diseases. In selective autophagy, receptor proteins recognize degradation targets and direct their sequestration by double-membrane vesicles called autophagosomes, which transport them into lysosomes or vacuoles. Although recent studies have shown that selective autophagy is involved in quality/quantity control of some organelles, including mitochondria and peroxisomes, it remains unclear how extensively it contributes to cellular organelle homeostasis. Here we describe selective autophagy of the endoplasmic reticulum (ER) and nucleus in the yeast Saccharomyces cerevisiae. We identify two novel proteins, Atg39 and Atg40, as receptors specific to these pathways. Atg39 localizes to the perinuclear ER (or the nuclear envelope) and induces autophagic sequestration of part of the nucleus. Atg40 is enriched in the cortical and cytoplasmic ER, and loads these ER subdomains into autophagosomes. Atg39-dependent autophagy of the perinuclear ER/nucleus is required for cell survival under nitrogen-deprivation conditions. Atg40 is probably the functional counterpart of FAM134B, an autophagy receptor for the ER in mammals that has been implicated in sensory neuropathy. Our results provide fundamental insight into the pathophysiological roles and mechanisms of ‘ER-phagy’ and ‘nucleophagy’ in other organisms.


Molecular Cell | 2001

Secretion monitor, SecM, undergoes self-translation arrest in the cytosol.

Hitoshi Nakatogawa; Koreaki Ito

The product of the Escherichia coli secM gene (secretion monitor, formerly gene X), upstream of secA, is involved in secretion-responsive control of SecA translation. In wild-type cells, SecM is rapidly degraded by the periplasmic tail-specific protease. It is also subject to a transient translation pause at a position close to the C terminus. The elongation arrest was strikingly prolonged when translocation of SecM was impaired. SRP was not required for this arrest. Instead, the nascent SecM product itself may participate, as the arrest was diminished when it incorporated a proline analog, azetidine. We propose that cytosolically localized nascent SecM undergoes self-translation arrest, thereby enhancing translation of secA through an altered secondary structure of the secM-secA messenger RNA.


Journal of Cell Biology | 2013

Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin

Naonobu Fujita; Eiji Morita; Takashi Itoh; Atsushi Tanaka; Megumi Nakaoka; Yuki Osada; Tetsuo Umemoto; Tatsuya Saitoh; Hitoshi Nakatogawa; Shouhei Kobayashi; Tokuko Haraguchi; Jun-Lin Guan; Kazuhiro Iwai; Fuminori Tokunaga; Kazunobu Saito; Koutaro Ishibashi; Shizuo Akira; Mitsunori Fukuda; Takeshi Noda; Tamotsu Yoshimori

After bacterial invasion, ubiquitin is conjugated to host endosomal proteins and recognized by the autophagic machinery independent of LC3.


Autophagy | 2012

Atg4 recycles inappropriately lipidated Atg8 to promote autophagosome biogenesis

Hitoshi Nakatogawa; Junko Ishii; Eri Asai; Yoshinori Ohsumi

Atg8 is a ubiquitin-like protein required for autophagy in the budding yeast Saccharomyces cerevisiae. A ubiquitin-like system mediates the conjugation of the C terminus of Atg8 to the lipid phosphatidylethanolamine (PE), and this conjugate (Atg8–PE) plays a crucial role in autophagosome formation at the phagophore assembly site/pre-autophagosomal structure (PAS). The cysteine protease Atg4 processes the C terminus of newly synthesized Atg8 and also delipidates Atg8 to release the protein from membranes. While the former is a prerequisite for lipidation of Atg8, the significance of the latter in autophagy has remained unclear. Here, we show that autophagosome formation is significantly retarded in cells deficient for Atg4-mediated delipidation of Atg8. We find that Atg8–PE accumulates on various organelle membranes including the vacuole, the endosome and the ER in these cells, which depletes unlipidated Atg8 and thereby attenuates its localization to the PAS. Our results suggest that the Atg8–PE that accumulates on organelle membranes is erroneously produced by lipidation system components independently of the normal autophagic process. It is also suggested that delipidation of Atg8 by Atg4 on different organelle membranes promotes autophagosome formation. Considered together with other results, we propose that Atg4 acts to compensate for the intrinsic defect in the lipidation system; it recycles Atg8–PE generated on inappropriate membranes to maintain a reservoir of unlipidated Atg8 that is required for autophagosome formation at the PAS.


Molecular Cell | 2011

Structural basis of Atg8 activation by a homodimeric E1, Atg7.

Nobuo N. Noda; Kenji Satoo; Yuko Fujioka; Hiroyuki Kumeta; Kenji Ogura; Hitoshi Nakatogawa; Yoshinori Ohsumi; Fuyuhiko Inagaki

E1 enzymes activate ubiquitin-like proteins and transfer them to cognate E2 enzymes. Atg7, a noncanonical E1, activates two ubiquitin-like proteins, Atg8 and Atg12, and plays a crucial role in autophagy. Here, we report crystal structures of full-length Atg7 and its C-terminal domain bound to Atg8 and MgATP, as well as a solution structure of Atg8 bound to the extreme C-terminal domain (ECTD) of Atg7. The unique N-terminal domain (NTD) of Atg7 is responsible for Atg3 (E2) binding, whereas its C-terminal domain is comprised of a homodimeric adenylation domain (AD) and ECTD. The structural and biochemical data demonstrate that Atg8 is initially recognized by the C-terminal tail of ECTD and is then transferred to an AD, where the Atg8 C terminus is attacked by the catalytic cysteine to form a thioester bond. Atg8 is then transferred via a trans mechanism to the Atg3 bound to the NTD of the opposite protomer within a dimer.


Journal of Biological Chemistry | 2012

Autophagy-related Protein 32 Acts as Autophagic Degron and Directly Initiates Mitophagy

Noriko Kondo-Okamoto; Nobuo N. Noda; Sho W. Suzuki; Hitoshi Nakatogawa; Ikuko Takahashi; Miou Matsunami; Ayako Hashimoto; Fuyuhiko Inagaki; Yoshinori Ohsumi; Koji Okamoto

Background: Atg32 is a transmembrane protein essential for mitochondria autophagy in yeast. Results: Atg32 harbors a module that is crucial for interactions with Atg8 and Atg11, and can even promote other organelle autophagy. Conclusion: Atg32 acts as a direct initiator at early stages of mitochondria autophagy. Significance: This might be a common molecular feature in mitochondria autophagy conserved from yeast to humans. Autophagy-related degradation selective for mitochondria (mitophagy) is an evolutionarily conserved process that is thought to be critical for mitochondrial quality and quantity control. In budding yeast, autophagy-related protein 32 (Atg32) is inserted into the outer membrane of mitochondria with its N- and C-terminal domains exposed to the cytosol and mitochondrial intermembrane space, respectively, and plays an essential role in mitophagy. Atg32 interacts with Atg8, a ubiquitin-like protein localized to the autophagosome, and Atg11, a scaffold protein required for selective autophagy-related pathways, although the significance of these interactions remains elusive. In addition, whether Atg32 is the sole protein necessary and sufficient for initiation of autophagosome formation has not been addressed. Here we show that the Atg32 IMS domain is dispensable for mitophagy. Notably, when anchored to peroxisomes, the Atg32 cytosol domain promoted autophagy-dependent peroxisome degradation, suggesting that Atg32 contains a module compatible for other organelle autophagy. X-ray crystallography reveals that the Atg32 Atg8 family-interacting motif peptide binds Atg8 in a conserved manner. Mutations in this binding interface impair association of Atg32 with the free form of Atg8 and mitophagy. Moreover, Atg32 variants, which do not stably interact with Atg11, are strongly defective in mitochondrial degradation. Finally, we demonstrate that Atg32 forms a complex with Atg8 and Atg11 prior to and independent of isolation membrane generation and subsequent autophagosome formation. Taken together, our data implicate Atg32 as a bipartite platform recruiting Atg8 and Atg11 to the mitochondrial surface and forming an initiator complex crucial for mitophagy.


Essays in Biochemistry | 2013

Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy

Hitoshi Nakatogawa

In autophagy, the autophagosome, a transient organelle specialized for the sequestration and lysosomal or vacuolar transport of cellular constituents, is formed via unique membrane dynamics. This process requires concerted actions of a distinctive set of proteins named Atg (autophagy-related). Atg proteins include two ubiquitin-like proteins, Atg12 and Atg8 [LC3 (light-chain 3) and GABARAP (γ-aminobutyric acid receptor-associated protein) in mammals]. Sequential reactions by the E1 enzyme Atg7 and the E2 enzyme Atg10 conjugate Atg12 to the lysine residue in Atg5, and the resulting Atg12-Atg5 conjugate forms a complex with Atg16. On the other hand, Atg8 is first processed at the C-terminus by Atg4, which is related to ubiquitin-processing/deconjugating enzymes. Atg8 is then activated by Atg7 (shared with Atg12) and, via the E2 enzyme Atg3, finally conjugated to the amino group of the lipid PE (phosphatidylethanolamine). The Atg12-Atg5-Atg16 complex acts as an E3 enzyme for the conjugation reaction of Atg8; it enhances the E2 activity of Atg3 and specifies the site of Atg8-PE production to be autophagy-related membranes. Atg8-PE is suggested to be involved in autophagosome formation at multiple steps, including membrane expansion and closure. Moreover, Atg4 cleaves Atg8-PE to liberate Atg8 from membranes for reuse, and this reaction can also regulate autophagosome formation. Thus these two ubiquitin-like systems are intimately involved in driving the biogenesis of the autophagosomal membrane.

Collaboration


Dive into the Hitoshi Nakatogawa's collaboration.

Top Co-Authors

Avatar

Yoshinori Ohsumi

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koreaki Ito

Kyoto Sangyo University

View shared research outputs
Top Co-Authors

Avatar

Hiromi Kirisako

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keisuke Mochida

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Eri Asai

Tokyo Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge