Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuko Fujioka is active.

Publication


Featured researches published by Yuko Fujioka.


Journal of Biological Chemistry | 2007

The Atg12-Atg5 Conjugate Has a Novel E3-like Activity for Protein Lipidation in Autophagy

Takao Hanada; Nobuo N. Noda; Yoshinori Satomi; Yoshinobu Ichimura; Yuko Fujioka; Toshifumi Takao; Fuyuhiko Inagaki; Yoshinori Ohsumi

Autophagy is a bulk degradation process in eukaryotic cells; autophagosomes enclose cytoplasmic components for degradation in the lysosome/vacuole. Autophagosome formation requires two ubiquitin-like conjugation systems, the Atg12 and Atg8 systems, which are tightly associated with expansion of autophagosomal membrane. Previous studies have suggested that there is a hierarchy between these systems; the Atg12 system is located upstream of the Atg8 system in the context of Atg protein organization. However, the concrete molecular relationship is unclear. Here, we show using an in vitro Atg8 conjugation system that the Atg12-Atg5 conjugate, but not unconjugated Atg12 or Atg5, strongly enhances the formation of the other conjugate, Atg8-PE. The Atg12-Atg5 conjugate promotes the transfer of Atg8 from Atg3 to the substrate, phosphatidylethanolamine (PE), by stimulating the activity of Atg3. We also show that the Atg12-Atg5 conjugate interacts with both Atg3 and PE-containing liposomes. These results indicate that the Atg12-Atg5 conjugate is a ubiquitin-protein ligase (E3)-like enzyme for Atg8-PE conjugation reaction, distinctively promoting protein-lipid conjugation.


Genes to Cells | 2008

Structural basis of target recognition by Atg8/LC3 during selective autophagy

Nobuo N. Noda; Hiroyuki Kumeta; Hitoshi Nakatogawa; Kenji Satoo; Wakana Adachi; Junko Ishii; Yuko Fujioka; Yoshinori Ohsumi; Fuyuhiko Inagaki

Autophagy is a non‐selective bulk degradation process in which isolation membranes enclose a portion of cytoplasm to form double‐membrane vesicles, called autophagosomes, and deliver their inner constituents to the lytic compartments. Recent studies have also shed light on another mode of autophagy that selectively degrades various targets. Yeast Atg8 and its mammalian homologue LC3 are ubiquitin‐like modifiers that are localized on isolation membranes and play crucial roles in the formation of autophagosomes. These proteins are also involved in selective incorporation of specific cargo molecules into autophagosomes, in which Atg8 and LC3 interact with Atg19 and p62, receptor proteins for vacuolar enzymes and disease‐related protein aggregates, respectively. Using X‐ray crystallography and NMR, we herein report the structural basis for Atg8–Atg19 and LC3–p62 interactions. Remarkably, Atg8 and LC3 were shown to interact with Atg19 and p62, respectively, in a quite similar manner: they recognized the side‐chains of Trp and Leu in a four‐amino acid motif, WXXL, in Atg19 and p62 using hydrophobic pockets conserved among Atg8 homologues. Together with mutational analyses, our results show the fundamental mechanism that allows Atg8 homologues, in association with WXXL‐containing proteins, to capture specific cargo molecules, thereby endowing isolation membranes and/or their assembly machineries with target selectivity.


The EMBO Journal | 2009

The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy.

Kenji Satoo; Nobuo N. Noda; Hiroyuki Kumeta; Yuko Fujioka; Noboru Mizushima; Yoshinori Ohsumi; Fuyuhiko Inagaki

Atg8 is conjugated to phosphatidylethanolamine (PE) by ubiquitin‐like conjugation reactions. Atg8 has at least two functions in autophagy: membrane biogenesis and target recognition. Regulation of PE conjugation and deconjugation of Atg8 is crucial for these functions in which Atg4 has a critical function by both processing Atg8 precursors and deconjugating Atg8–PE. Here, we report the crystal structures of catalytically inert human Atg4B (HsAtg4B) in complex with processed and unprocessed forms of LC3, a mammalian orthologue of yeast Atg8. On LC3 binding, the regulatory loop and the N‐terminal tail of HsAtg4B undergo large conformational changes. The regulatory loop masking the entrance of the active site of free HsAtg4B is lifted by LC3 Phe119, so that a groove is formed along which the LC3 tail enters the active site. At the same time, the N‐terminal tail masking the exit of the active site of HsAtg4B in the free form is detached from the enzyme core and a large flat surface is exposed, which might enable the enzyme to access the membrane‐bound LC3–PE.


Molecular and Cellular Biology | 2005

Tor2 Directly Phosphorylates the AGC Kinase Ypk2 To Regulate Actin Polarization

Yoshiaki Kamada; Yuko Fujioka; Nobuo Suzuki; Fuyuhiko Inagaki; Stephan Wullschleger; Robbie Loewith; Michael N. Hall; Yoshinori Ohsumi

ABSTRACT The target of rapamycin (TOR) protein kinases, Tor1 and Tor2, form two distinct complexes (TOR complex 1 and 2) in the yeast Saccharomyces cerevisiae. TOR complex 2 (TORC2) contains Tor2 but not Tor1 and controls polarity of the actin cytoskeleton via the Rho1/Pkc1/MAPK cell integrity cascade. Substrates of TORC2 and how TORC2 regulates the cell integrity pathway are not well understood. Screening for multicopy suppressors of tor2, we obtained a plasmid expressing an N-terminally truncated Ypk2 protein kinase. This truncation appears to partially disrupt an autoinhibitory domain in Ypk2, and a point mutation in this region (Ypk2D239A) conferred upon full-length Ypk2 the ability to rescue growth of cells compromised in TORC2, but not TORC1, function. YPK2 D239A also suppressed the lethality of tor2Δ cells, suggesting that Ypks play an essential role in TORC2 signaling. Ypk2 is phosphorylated directly by Tor2 in vitro, and Ypk2 activity is largely reduced in tor2Δ cells. In contrast, Ypk2D239A has increased and TOR2-independent activity in vivo. Thus, we propose that Ypk protein kinases are direct and essential targets of TORC2, coupling TORC2 to the cell integrity cascade.


Journal of Biological Chemistry | 2007

Structure of Atg5.Atg16, a complex essential for autophagy

Minako Matsushita; Nobuo N. Suzuki; Keisuke Obara; Yuko Fujioka; Yoshinori Ohsumi; Fuyuhiko Inagaki

Atg5 is covalently modified with a ubiquitin-like modifier, Atg12, and the Atg12-Atg5 conjugate further forms a complex with the multimeric protein Atg16. The Atg12-Atg5·Atg16 multimeric complex plays an essential role in autophagy, the bulk degradation system conserved in all eukaryotes. We have reported here the crystal structure of Atg5 complexed with the N-terminal region of Atg16 at 1.97Å resolution. Atg5 comprises two ubiquitin-like domains that flank a helix-rich domain. The N-terminal region of Atg16 has a helical structure and is bound to the groove formed by these three domains. In vitro analysis showed that Arg-35 and Phe-46 of Atg16 are crucial for the interaction. Atg16, with a mutation at these residues, failed to localize to the pre-autophagosomal structure and could not restore autophagy in Atg16-deficient yeast strains. Furthermore, these Atg16 mutants could not restore a severe reduction in the formation of the Atg8-phosphatidylethanolamine conjugate, another essential factor for autophagy, in Atg16-deficient strains under starvation conditions. These results taken together suggest that the direct interaction between Atg5 and Atg16 is crucial to the performance of their roles in autophagy.


Genes to Cells | 2004

The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8

Kenji Sugawara; Nobuo N. Suzuki; Yuko Fujioka; Noboru Mizushima; Yoshinori Ohsumi; Fuyuhiko Inagaki

Microtubule‐associated protein light chain 3 (LC3), a mammalian homologue of yeast Atg8, plays an essential role in autophagy, which is involved in the bulk degradation of cytoplasmic components by the lysosomal system. Here, we report the crystal structure of LC3 at 2.05 Å resolution with an R‐factor of 21.8% and a free R‐factor of 24.9%. The structure of LC3, which is similar to those of Golgi‐associated ATPase enhancer of 16 kDa (GATE‐16) and GABAA receptor‐associated protein (GABARAP), contains a ubiquitin core with two α helices, α1 and α2, attached at its N‐terminus. Some common and distinct features are observed among these proteins, including the conservation of residues required to form an interaction among α1, α2 and the ubiquitin core. However, the electrostatic potential surfaces of these helices differ, implicating particular roles to select specific binding partners. Hydrophobic patches on the ubiquitin core of LC3, GABARAP and GATE‐16 are well conserved and are similar to the E1 binding surface of ubiquitin and NEDD8. Therefore, we propose that the hydrophobic patch is a binding surface for mammalian Atg7 similar to a ubiquitin‐like conjugation system. We also propose the functional implications of the ubiquitin fold as a recognition module of target proteins.


Journal of Biological Chemistry | 2005

Structural basis for the specificity and catalysis of human Atg4B responsible for mammalian autophagy

Kenji Sugawara; Nobuo N. Suzuki; Yuko Fujioka; Noboru Mizushima; Yoshinori Ohsumi; Fuyuhiko Inagaki

Reversible modification of Atg8 with phosphatidylethanolamine is crucial for autophagy, the bulk degradation system conserved in eukaryotic cells. Atg4 is a novel cysteine protease that processes and deconjugates Atg8. Herein, we report the crystal structure of human Atg4B (HsAtg4B) at 1.9-Å resolution. Despite no obvious sequence homology with known proteases, the structure of HsAtg4B shows a classical papain-like fold. In addition to the papain fold region, HsAtg4B has a small α/β-fold domain. This domain is thought to be the binding site for Atg8 homologs. The active site cleft of HsAtg4B is masked by a loop (residues 259–262), implying a conformational change upon substrate binding. The structure and in vitro mutational analyses provide the basis for the specificity and catalysis of HsAtg4B. This will enable the design of Atg4-specific inhibitors that block autophagy.


Autophagy | 2005

The Crystal Structure of Plant ATG12 and its Biological Implication in Autophagy

Nobuo N. Suzuki; Kohki Yoshimoto; Yuko Fujioka; Yoshinori Ohsumi; Fuyuhiko Inagaki

Atg12 is a post-translational modifier that is activated and conjugated to its single target, Atg5, by a ubiquitin-like conjugation system. The Atg12-Atg5 conjugate is essential for autophagy, the bulk degradation process of cytoplasmic components by the vacuolar/lysosomal system. Here, we demonstrate that the Atg12 conjugation system exists in Arabidopsis and is essential for plant autophagy as well as in yeast and mammals. We also report the crystal structure of Arabidopsis thaliana (At) ATG12 at 1.8 Å resolution. Despite no obvious sequence homology with ubiquitin, the structure of AtATG12 shows a ubiquitin fold strikingly similar to those of mammalian homologs of Atg8, the other ubiquitin-like modifier essential for autophagy, which is conjugated to phosphatidylethanolamine. Two types of hydrophobic patches are present on the surface of AtATG12: one is conserved in both Atg12 and Atg8 orthologs, while the other is unique to Atg12 orthologs. Considering that they share Atg7 as an E1-like enzyme, we suggest that the first hydrophobic patch is responsible for the conjugation reaction, while the latter is involved in Atg12-specific functions.


Molecular Cell | 2011

Structural basis of Atg8 activation by a homodimeric E1, Atg7.

Nobuo N. Noda; Kenji Satoo; Yuko Fujioka; Hiroyuki Kumeta; Kenji Ogura; Hitoshi Nakatogawa; Yoshinori Ohsumi; Fuyuhiko Inagaki

E1 enzymes activate ubiquitin-like proteins and transfer them to cognate E2 enzymes. Atg7, a noncanonical E1, activates two ubiquitin-like proteins, Atg8 and Atg12, and plays a crucial role in autophagy. Here, we report crystal structures of full-length Atg7 and its C-terminal domain bound to Atg8 and MgATP, as well as a solution structure of Atg8 bound to the extreme C-terminal domain (ECTD) of Atg7. The unique N-terminal domain (NTD) of Atg7 is responsible for Atg3 (E2) binding, whereas its C-terminal domain is comprised of a homodimeric adenylation domain (AD) and ECTD. The structural and biochemical data demonstrate that Atg8 is initially recognized by the C-terminal tail of ECTD and is then transferred to an AD, where the Atg8 C terminus is attacked by the catalytic cysteine to form a thioester bond. Atg8 is then transferred via a trans mechanism to the Atg3 bound to the NTD of the opposite protomer within a dimer.


Biochemical and Biophysical Research Communications | 2009

Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae.

Yukiko Kabeya; Nobuo N. Noda; Yuko Fujioka; Kuninori Suzuki; Fuyuhiko Inagaki; Yoshinori Ohsumi

Nutrient starvation induces autophagy to degrade cytoplasmic materials in the vacuole/lysosomes. In the yeast, Saccharomyces cerevisiae, Atg17, Atg29, and Atg31/Cis1 are specifically required for autophagosome formation by acting as a scaffold complex essential for pre-autophagosomal structure (PAS) organization. Here, we show that these proteins constitutively form an Atg17-Atg29-Atg31 ternary complex, in which phosphorylated Atg31 is included. Reconstitution analysis of the ternary complex in E. coli indicates that the three proteins are included in equimolar amounts in the complex. The molecular mass of a monomeric Atg17-Atg29-Atg31 complex is calculated at 97kDa; however, analytical ultracentrifugation shows that the molecular mass of the ternary complex is 198kDa, suggesting a dimeric complex. We propose that this ternary complex acts as a functional unit for autophagosome formation.

Collaboration


Dive into the Yuko Fujioka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshinori Ohsumi

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hitoshi Nakatogawa

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge