Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hoi Sung Chung is active.

Publication


Featured researches published by Hoi Sung Chung.


Science | 2012

Single-Molecule Fluorescence Experiments Determine Protein Folding Transition Path Times

Hoi Sung Chung; Kevin McHale; John M. Louis; William A. Eaton

A Fraction of Folding An energy barrier has to be crossed as a protein transforms between folded and unfolded states. Molecular dynamic simulations have observed sharp transitions, with barrier crossing times of less than a microsecond, a fraction of the total folding time; however, this time range has been inaccessible to single-molecule experiments. Chung et al. (p. 981) described single-molecule fluorescence experiments that allowed measurement of the transition-path time for a fast-folding protein and to reduce the upper bound for a slow-folding protein. Although the folding rates differed by a factor of 10,000, the transition-path times differ by less than a factor of 5, pointing to energy landscape theory for the explanation. Quickly and slowly folding proteins take the same time to cross the barrier from the unfolded to the folded state. The transition path is the tiny fraction of an equilibrium molecular trajectory when a transition occurs as the free-energy barrier between two states is crossed. It is a single-molecule property that contains all the mechanistic information on how a process occurs. As a step toward observing transition paths in protein folding, we determined the average transition-path time for a fast- and a slow-folding protein from a photon-by-photon analysis of fluorescence trajectories in single-molecule Förster resonance energy transfer experiments. Whereas the folding rate coefficients differ by a factor of 10,000, the transition-path times differ by a factor of less than 5, which shows that a fast- and a slow-folding protein take almost the same time to fold when folding actually happens. A very simple model based on energy landscape theory can explain this result.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Experimental determination of upper bound for transition path times in protein folding from single-molecule photon-by-photon trajectories

Hoi Sung Chung; John M. Louis; William A. Eaton

Transition paths are a uniquely single-molecule property not yet observed for any molecular process in solution. The duration of transition paths is the tiny fraction of the time in an equilibrium single-molecule trajectory when the process actually happens. Here, we report the determination of an upper bound for the transition path time for protein folding from photon-by-photon trajectories. FRET trajectories were measured on single molecules of the dye-labeled, 56-residue 2-state protein GB1, immobilized on a glass surface via a biotin-streptavidin-biotin linkage. Characterization of individual emitted photons by their wavelength, polarization, and absolute and relative time of arrival after picosecond excitation allowed the determination of distributions of FRET efficiencies, donor and acceptor lifetimes, steady state polarizations, and waiting times in the folded and unfolded states. Comparison with the results for freely diffusing molecules showed that immobilization has no detectable effect on the structure or dynamics of the unfolded protein and only a small effect on the folding/unfolding kinetics. Analysis of the photon-by-photon trajectories yields a transition path time <200 μs, >10,000 times shorter than the mean waiting time in the unfolded state (the inverse of the folding rate coefficient). Szabos theory for diffusive transition paths shows that this upper bound for the transition path time is consistent with previous estimates of the Kramers preexponential factor for the rate coefficient, and predicts that the transition path time is remarkably insensitive to the folding rate, with only a 2-fold difference for rate coefficients that differ by 105-fold.


Nature | 2013

Single-molecule fluorescence probes dynamics of barrier crossing

Hoi Sung Chung; William A. Eaton

Kramers developed the theory on how chemical reaction rates are influenced by the viscosity of the medium. At the viscosity of water, the kinetics of unimolecular reactions are described by diffusion of a Brownian particle over a free-energy barrier separating reactants and products. For reactions in solution this famous theory extended Eyring’s transition state theory, and is widely applied in physics, chemistry and biology, including to reactions as complex as protein folding. Because the diffusion coefficient of Kramers’ theory is determined by the dynamics in the sparsely populated region of the barrier top, its properties have not been directly measured for any molecular system. Here we show that the Kramers diffusion coefficient and free-energy barrier can be characterized by measuring the temperature- and viscosity-dependence of the transition path time for protein folding. The transition path is the small fraction of an equilibrium trajectory for a single molecule when the free-energy barrier separating two states is actually crossed. Its duration, the transition path time, can now be determined from photon trajectories for single protein molecules undergoing folding/unfolding transitions. Our finding of a long transition path time with an unusually small solvent viscosity dependence suggests that internal friction as well as solvent friction determine the Kramers diffusion coefficient for α-helical proteins, as opposed to a breakdown of his theory, which occurs for many small-molecule reactions. It is noteworthy that the new and fundamental information concerning Kramers’ theory and the dynamics of barrier crossings obtained here come from experiments on a protein rather than a much simpler chemical or physical system.


Science | 2015

Structural origin of slow diffusion in protein folding

Hoi Sung Chung; Stefano Piana-Agostinetti; David E. Shaw; William A. Eaton

Interactions that slow protein folding As proteins fold, they diffuse over an energy barrier that separates unfolded and folded states. The transition path defines how a single protein crosses the barrier and so contains key information on the mechanism of folding. Transition paths have not yet been experimentally observed, but Chung et al. have discovered which structural features of the protein affect the duration of the transition. As the protein folds, non-native salt bridges form and break, slowing diffusion along the transition path. Science, this issue p. 1504 Single-molecule experiments and simulations show how molecular interactions can direct protein folding by slowing diffusion. Experimental, theoretical, and computational studies of small proteins suggest that interresidue contacts not present in the folded structure play little or no role in the self-assembly mechanism. Non-native contacts can, however, influence folding kinetics by introducing additional local minima that slow diffusion over the global free-energy barrier between folded and unfolded states. Here, we combine single-molecule fluorescence with all-atom molecular dynamics simulations to discover the structural origin for the slow diffusion that markedly decreases the folding rate for a designed α-helical protein. Our experimental determination of transition path times and our analysis of the simulations point to non-native salt bridges between helices as the source, which provides a quantitative glimpse of how specific intramolecular interactions influence protein folding rates by altering dynamics and not activation free energies.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Solution structure of the ESCRT-I complex by small-angle X-ray scattering, EPR, and FRET spectroscopy

Evzen Boura; Bartosz Różycki; Dawn Z. Herrick; Hoi Sung Chung; Jaroslav Vecer; William A. Eaton; David S. Cafiso; Gerhard Hummer; James H. Hurley

ESCRT-I is required for the sorting of integral membrane proteins to the lysosome, or vacuole in yeast, for cytokinesis in animal cells, and for the budding of HIV-1 from human macrophages and T lymphocytes. ESCRT-I is a heterotetramer of Vps23, Vps28, Vps37, and Mvb12. The crystal structures of the core complex and the ubiquitin E2 variant and Vps28 C-terminal domains have been determined, but internal flexibility has prevented crystallization of intact ESCRT-I. Here we have characterized the structure of ESCRT-I in solution by simultaneous structural refinement against small-angle X-ray scattering and double electron–electron resonance spectroscopy of spin-labeled complexes. An ensemble of at least six structures, comprising an equally populated mixture of closed and open conformations, was necessary to fit all of the data. This structural ensemble was cross-validated against single-molecule FRET spectroscopy, which suggested the presence of a continuum of open states. ESCRT-I in solution thus appears to consist of an approximately 50% population of one or a few related closed conformations, with the other 50% populating a continuum of open conformations. These conformations provide reference points for the structural pathway by which ESCRT-I induces membrane buds.


Journal of Physical Chemistry A | 2011

Extracting rate coefficients from single-molecule photon trajectories and FRET efficiency histograms for a fast-folding protein.

Hoi Sung Chung; Irina V. Gopich; Kevin McHale; Troy Cellmer; John M. Louis; William A. Eaton

Recently developed statistical methods by Gopich and Szabo were used to extract folding and unfolding rate coefficients from single-molecule Förster resonance energy transfer (FRET) data for proteins with kinetics too fast to measure waiting time distributions. Two types of experiments and two different analyses were performed. In one experiment bursts of photons were collected from donor and acceptor fluorophores attached to a 73-residue protein, α(3)D, freely diffusing through the illuminated volume of a confocal microscope system. In the second, the protein was immobilized by linkage to a surface, and photons were collected until one of the fluorophores bleached. Folding and unfolding rate coefficients and mean FRET efficiencies for the folded and unfolded subpopulations were obtained from a photon by photon analysis of the trajectories using a maximum likelihood method. The ability of the method to describe the data in terms of a two-state model was checked by recoloring the photon trajectories with the extracted parameters and comparing the calculated FRET efficiency histograms with the measured histograms. The sum of the rate coefficients for the two-state model agreed to within 30% with the relaxation rate obtained from the decay of the donor-acceptor cross-correlation function, confirming the high accuracy of the method. Interestingly, apparently reliable rate coefficients could be extracted using the maximum likelihood method, even at low (<10%) population of the minor component where the cross-correlation function was too noisy to obtain any useful information. The rate coefficients and mean FRET efficiencies were also obtained in an approximate procedure by simply fitting the FRET efficiency histograms, calculated by binning the donor and acceptor photons, with a sum of three-Gaussian functions. The kinetics are exposed in these histograms by the growth of a FRET efficiency peak at values intermediate between the folded and unfolded peaks as the bin size increases, a phenomenon with similarities to NMR exchange broadening. When comparable populations of folded and unfolded molecules are present, this method yields rate coefficients in very good agreement with those obtained with the maximum likelihood method. As a first step toward characterizing transition paths, the Viterbi algorithm was used to locate the most probable transition points in the photon trajectories.


Structure | 2012

Solution structure of the ESCRT-I and -II supercomplex: implications for membrane budding and scission.

Evzen Boura; Bartosz Różycki; Hoi Sung Chung; Dawn Z. Herrick; Bertram Canagarajah; David S. Cafiso; William A. Eaton; Gerhard Hummer; James H. Hurley

The ESCRT-I and ESCRT-II supercomplex induces membrane buds that invaginate into the lumen of endosomes, a process central to the lysosomal degradation of ubiquitinated membrane proteins. The solution conformation of the membrane-budding ESCRT-I-II supercomplex from yeast was refined against small-angle X-ray scattering (SAXS), single-molecule Förster resonance energy transfer (smFRET), and double electron-electron resonance (DEER) spectra. These refinements yielded an ensemble of 18 ESCRT-I-II supercomplex structures that range from compact to highly extended. The crescent shapes of the ESCRT-I-II supercomplex structures provide the basis for a detailed mechanistic model, in which ESCRT-I-II stabilizes membrane buds and coordinates cargo sorting by lining the pore of the nascent bud necks. The hybrid refinement used here is general and should be applicable to other dynamic multiprotein assmeblies.


Biophysical Journal | 2010

Distinguishing between Protein Dynamics and Dye Photophysics in Single-Molecule FRET Experiments

Hoi Sung Chung; John M. Louis; William A. Eaton

Förster resonance energy transfer (FRET) efficiency distributions in single-molecule experiments contain both structural and dynamical information. Extraction of this information from these distributions requires a careful analysis of contributions from dye photophysics. To investigate how mechanisms other than FRET affect the distributions obtained by counting donor and acceptor photons, we have measured single-molecule fluorescence trajectories of a small alpha/beta protein, i.e., protein GB1, undergoing two-state, folding/unfolding transitions. Alexa 488 donor and Alexa 594 acceptor dyes were attached to cysteines at positions 10 and 57 to yield two isomers-donor(10)/acceptor(57) and donor(57)/acceptor(10)-which could not be separated in the purification. The protein was immobilized via binding of a histidine tag added to a linker sequence at the N-terminus to cupric ions embedded in a polyethylene-glycol-coated glass surface. The distribution of FRET efficiencies assembled from the trajectories is complex with widths for the individual peaks in large excess of that caused by shot noise. Most of this complexity can be explained by two interfering photophysical effects-a photoinduced red shift of the donor dye and differences in the quantum yield of the acceptor dye for the two isomers resulting from differences in quenching rate by the cupric ion. Measurements of steady-state polarization, calculation of the donor-acceptor cross-correlation function from photon trajectories, and comparison of the single molecule and ensemble kinetics all indicate that conformational distributions and dynamics do not contribute to the complexity.


Journal of Physical Chemistry B | 2016

Analysis of Fluorescence Lifetime and Energy Transfer Efficiency in Single-Molecule Photon Trajectories of Fast-Folding Proteins.

Hoi Sung Chung; John M. Louis; Irina V. Gopich

In single-molecule Förster resonance energy transfer (FRET) spectroscopy, the dynamics of molecular processes are usually determined by analyzing the fluorescence intensity of donor and acceptor dyes. Since FRET efficiency is related to fluorescence lifetimes, additional information can be extracted by analyzing fluorescence intensity and lifetime together. For fast processes where individual states are not well separated in a trajectory, it is not easy to obtain the lifetime information. Here, we present analysis methods to utilize fluorescence lifetime information from single-molecule FRET experiments, and apply these methods to three fast-folding, two-state proteins. By constructing 2D FRET efficiency-lifetime histograms, the correlation can be visualized between the FRET efficiency and fluorescence lifetimes in the presence of the submicrosecond to millisecond dynamics. We extend the previously developed method for analyzing delay times of donor photons to include acceptor delay times. To determine the kinetics and lifetime parameters accurately, we used a maximum likelihood method. We found that acceptor blinking can lead to inaccurate parameters in the donor delay time analysis. This problem can be solved by incorporating acceptor blinking into a model. While the analysis of acceptor delay times is not affected by acceptor blinking, it is more sensitive to the shape of the delay time distribution resulting from a broad conformational distribution in the unfolded state.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Oligomerization of the tetramerization domain of p53 probed by two- and three-color single-molecule FRET

Hoi Sung Chung; Fanjie Meng; Jae-Yeol Kim; Kevin McHale; Irina V. Gopich; John M. Louis

Significance Intrinsically disordered proteins often form pathological oligomers implicated in various diseases. In many cases, these oligomers cannot be separated and characterizations of their sizes and conformations are difficult. We develop a single-molecule fluorescence method that can probe individual oligomers without separation and determine the equilibrium constants and oligomerization kinetics. By combining two- and three-color single-molecule FRET spectroscopy with fluorescence lifetime analysis, it is possible to determine conformations and flexibility of individual oligomers unambiguously. We apply this method to the oligomerization of the tetramerization domain of p53 and compare conformations of monomer, dimer, and tetramer. This method will be useful in exploring other protein oligomerization systems involved in important biological and disease processes. We describe a method that combines two- and three-color single-molecule FRET spectroscopy with 2D FRET efficiency–lifetime analysis to probe the oligomerization process of intrinsically disordered proteins. This method is applied to the oligomerization of the tetramerization domain (TD) of the tumor suppressor protein p53. TD exists as a monomer at subnanomolar concentrations and forms a dimer and a tetramer at higher concentrations. Because the dissociation constants of the dimer and tetramer are very close, as we determine in this paper, it is not possible to characterize different oligomeric species by ensemble methods, especially the dimer that cannot be readily separated. However, by using single-molecule FRET spectroscopy that includes measurements of fluorescence lifetime and two- and three-color FRET efficiencies with corrections for submillisecond acceptor blinking, we show that it is possible to obtain structural information for individual oligomers at equilibrium and to determine the dimerization kinetics. From these analyses, we show that the monomer is intrinsically disordered and that the dimer conformation is very similar to that of the tetramer but the C terminus of the dimer is more flexible.

Collaboration


Dive into the Hoi Sung Chung's collaboration.

Top Co-Authors

Avatar

William A. Eaton

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

John M. Louis

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Irina V. Gopich

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kevin McHale

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Fanjie Meng

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jae-Yeol Kim

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Katherine Truex

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Troy Cellmer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge