Hojung Nam
Gwangju Institute of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hojung Nam.
Molecular Systems Biology | 2014
Jeffrey D. Orth; Tom M Conrad; Jessica Na; Joshua A. Lerman; Hojung Nam; Adam M. Feist; Bernhard O. Palsson
The initial genome‐scale reconstruction of the metabolic network of Escherichia coli K‐12 MG1655 was assembled in 2000. It has been updated and periodically released since then based on new and curated genomic and biochemical knowledge. An update has now been built, named iJO1366, which accounts for 1366 genes, 2251 metabolic reactions, and 1136 unique metabolites. iJO1366 was (1) updated in part using a new experimental screen of 1075 gene knockout strains, illuminating cases where alternative pathways and isozymes are yet to be discovered, (2) compared with its predecessor and to experimental data sets to confirm that it continues to make accurate phenotypic predictions of growth on different substrates and for gene knockout strains, and (3) mapped to the genomes of all available sequenced E. coli strains, including pathogens, leading to the identification of hundreds of unannotated genes in these organisms. Like its predecessors, the iJO1366 reconstruction is expected to be widely deployed for studying the systems biology of E. coli and for metabolic engineering applications.
Science | 2012
Hojung Nam; Nathan E. Lewis; Joshua A. Lerman; Dae-Hee Lee; Roger L. Chang; Donghyuk Kim; Bernhard O. Palsson
Good Enough Can Be Good Enough To begin to understand why some enzymes are promiscuous and have many substrates, whereas others are highly specific, and why some have high activity, whereas others appear not to be optimized, Nam et al. (p. 1101) analyzed metabolic networks in bacteria. Specialist enzymes are essential for life, catalyze a high flux of enzymatic activity, and are more highly regulated. However, not all enzymes appear to be on a track of gradual improvement of specificity and efficiency. Generalist enzymes seem to well serve their own purposes, and their optimization may not justify the evolutionary cost. Are less promiscuous enzymes more highly evolved? Enzymes are thought to have evolved highly specific catalytic activities from promiscuous ancestral proteins. By analyzing a genome-scale model of Escherichia coli metabolism, we found that 37% of its enzymes act on a variety of substrates and catalyze 65% of the known metabolic reactions. However, it is not apparent why these generalist enzymes remain. Here, we show that there are marked differences between generalist enzymes and specialist enzymes, known to catalyze a single chemical reaction on one particular substrate in vivo. Specialist enzymes (i) are frequently essential, (ii) maintain higher metabolic flux, and (iii) require more regulation of enzyme activity to control metabolic flux in dynamic environments than do generalist enzymes. Furthermore, these properties are conserved in Archaea and Eukarya. Thus, the metabolic network context and environmental conditions influence enzyme evolution toward high specificity.
Genome Biology | 2013
Sangwoo Kim; Kyowon Jeong; Kunal Bhutani; Jeong Ho Lee; Anand Patel; Eric Scott; Hojung Nam; Hayan Lee; Joseph G. Gleeson; Vineet Bafna
Detection of somatic variation using sequence from disease-control matched data sets is a critical first step. In many cases including cancer, however, it is hard to isolate pure disease tissue, and the impurity hinders accurate mutation analysis by disrupting overall allele frequencies. Here, we propose a new method, Virmid, that explicitly determines the level of impurity in the sample, and uses it for improved detection of somatic variation. Extensive tests on simulated and real sequencing data from breast cancer and hemimegalencephaly demonstrate the power of our model. A software implementation of our method is available at http://sourceforge.net/projects/virmid/.
PLOS Computational Biology | 2014
Hojung Nam; Miguel A. Campodonico; Aarash Bordbar; Daniel R. Hyduke; Sangwoo Kim; Daniel C. Zielinski; Bernhard O. Palsson
Altered metabolism in cancer cells has been viewed as a passive response required for a malignant transformation. However, this view has changed through the recently described metabolic oncogenic factors: mutated isocitrate dehydrogenases (IDH), succinate dehydrogenase (SDH), and fumarate hydratase (FH) that produce oncometabolites that competitively inhibit epigenetic regulation. In this study, we demonstrate in silico predictions of oncometabolites that have the potential to dysregulate epigenetic controls in nine types of cancer by incorporating massive scale genetic mutation information (collected from more than 1,700 cancer genomes), expression profiling data, and deploying Recon 2 to reconstruct context-specific genome-scale metabolic models. Our analysis predicted 15 compounds and 24 substructures of potential oncometabolites that could result from the loss-of-function and gain-of-function mutations of metabolic enzymes, respectively. These results suggest a substantial potential for discovering unidentified oncometabolites in various forms of cancers.
BMC Bioinformatics | 2009
Hojung Nam; Ki-Young Lee; Doheon Lee
BackgroundOne of the most challenging problems in mining gene expression data is to identify how the expression of any particular gene affects the expression of other genes. To elucidate the relationships between genes, an association rule mining (ARM) method has been applied to microarray gene expression data. However, a conventional ARM method has a limit on extracting temporal dependencies between gene expressions, though the temporal information is indispensable to discover underlying regulation mechanisms in biological pathways. In this paper, we propose a novel method, referred to as temporal association rule mining (TARM), which can extract temporal dependencies among related genes. A temporal association rule has the form [gene A↑, gene B↓] → (7 min) [gene C↑], which represents that high expression level of gene A and significant repression of gene B followed by significant expression of gene C after 7 minutes. The proposed TARM method is tested with Saccharomyces cerevisiae cell cycle time-series microarray gene expression data set.ResultsIn the parameter fitting phase of TARM, the fitted parameter set [threshold = ± 0.8, support ≥ 3 transactions, confidence ≥ 90%] with the best precision score for KEGG cell cycle pathway has been chosen for rule mining phase. With the fitted parameter set, numbers of temporal association rules with five transcriptional time delays (0, 7, 14, 21, 28 minutes) are extracted from gene expression data of 799 genes, which are pre-identified cell cycle relevant genes. From the extracted temporal association rules, associated genes, which play same role of biological processes within short transcriptional time delay and some temporal dependencies between genes with specific biological processes are identified.ConclusionIn this work, we proposed TARM, which is an applied form of conventional ARM. TARM showed higher precision score than Dynamic Bayesian network and Bayesian network. Advantages of TARM are that it tells us the size of transcriptional time delay between associated genes, activation and inhibition relationship between genes, and sets of co-regulators.
Current Opinion in Biotechnology | 2011
Hojung Nam; Tom M Conrad; Nathan E. Lewis
Evolution results from molecular-level changes in an organism, thereby producing novel phenotypes and, eventually novel species. However, changes in a single gene can lead to significant changes in biomolecular networks through the gain and loss of many molecular interactions. Thus, significant insights into microbial evolution have been gained through the analysis and comparison of reconstructed metabolic networks. However, challenges remain from reconstruction incompleteness and the inability to experiment with evolution on the timescale necessary for new species to arise. Despite these challenges, experimental laboratory evolution of microbes has provided some insights into the cellular objectives underlying evolution, under the constraints of nutrient availability and the use of mechanisms that protect cells from extreme conditions.
BMC Systems Biology | 2011
Sangwoo Kim; Hojung Nam; Doheon Lee
BackgroundLymph node invasion is one of the most powerful clinical factors in cancer prognosis. However, molecular level signatures of their correlation are remaining poorly understood. Here, we propose a new approach, monotonically expressed gene analysis (MEGA), to correlate transcriptional patterns of lymph node invasion related genes with clinical outcome of breast cancer patients.ResultsUsing MEGA, we scored all genes with their transcriptional patterns over progression levels of lymph node invasion from 278 non-metastatic breast cancer samples. Applied on 65 independent test data, our gene sets of top 20 scores (positive and negative correlations) showed significant associations with prognostic measures such as cancer metastasis, relapse and survival. Our method showed better accuracy than conventional two class comparison methods. We could also find that expression patterns of some genes are strongly associated with stage transition of pathological T and N at specific time. Additionally, some pathways including T-cell immune response and wound healing serum response are expected to be related with cancer progression from pathway enrichment and common motif binding site analyses of the inferred gene sets.ConclusionsBy applying MEGA, we can find possible molecular links between lymph node invasion and cancer prognosis in human breast cancer, supported by evidences of feasible gene expression patterns and significant results of meta-analysis tests.
BMC Bioinformatics | 2017
Eunyoung Kim; Hojung Nam
BackgroundDrug-induced liver injury (DILI) is a critical issue in drug development because DILI causes failures in clinical trials and the withdrawal of approved drugs from the market. There have been many attempts to predict the risk of DILI based on in vivo and in silico identification of hepatotoxic compounds. In the current study, we propose the in silico prediction model predicting DILI using weighted molecular fingerprints.ResultsIn this study, we used 881 bits of molecular fingerprint and used as features describing presence or absence of each substructure of compounds. Then, the Bayesian probability of each substructure was calculated and labeled (positive or negative for DILI), and a weighted fingerprint was determined from the ratio of DILI-positive to DILI-negative probability values. Using weighted fingerprint features, the prediction models were trained and evaluated with the Random Forest (RF) and Support Vector Machine (SVM) algorithms. The constructed models yielded accuracies of 73.8% and 72.6%, AUCs of 0.791 and 0.768 in cross-validation. In independent tests, models achieved accuracies of 60.1% and 61.1% for RF and SVM, respectively. The results validated that weighted features helped increase overall performance of prediction models. The constructed models were further applied to the prediction of natural compounds in herbs to identify DILI potential, and 13,996 unique herbal compounds were predicted as DILI-positive with the SVM model.ConclusionsThe prediction models with weighted features increased the performance compared to non-weighted models. Moreover, we predicted the DILI potential of herbs with the best performed model, and the prediction results suggest that many herbal compounds could have potential to be DILI. We can thus infer that taking natural products without detailed references about the relevant pathways may be dangerous. Considering the frequency of use of compounds in natural herbs and their increased application in drug development, DILI labeling would be very important.
Biotechnology and Bioengineering | 2009
Hojung Nam; Jinwon Lee; Doheon Lee
Understanding altered metabolism is an important issue because altered metabolism is often revealed as a cause or an effect in pathogenesis. It has also been shown to be an important factor in the manipulation of an organisms metabolism in metabolic engineering. Unfortunately, it is not yet possible to measure the concentration levels of all metabolites in the genome-wide scale of a metabolic network; consequently, a method that infers the alteration of metabolism is beneficial. The present study proposes a computational method that identifies genome-wide altered metabolism by analyzing functional units of KEGG pathways. As control of a metabolic pathway is accomplished by altering the activity of at least one rate-determining step enzyme, not all gene expressions of enzymes in the pathway demonstrate significant changes even if the pathway is altered. Therefore, we measure the alteration levels of a metabolic pathway by selectively observing expression levels of significantly changed genes in a pathway. The proposed method was applied to two strains of Saccharomyces cerevisiae gene expression profiles measured in very high-gravity (VHG) fermentation. The method identified altered metabolic pathways whose properties are related to ethanol and osmotic stress responses which had been known to be observed in VHG fermentation because of the high sugar concentration in growth media and high ethanol concentration in fermentation products. With the identified altered pathways, the proposed method achieved best accuracy and sensitivity rates for the Red Star (RS) strain compared to other three related studies (gene-set enrichment analysis (GSEA), significance analysis of microarray to gene set (SAM-GS), reporter metabolite), and for the CEN.PK 113-7D (CEN) strain, the proposed method and the GSEA method showed comparably similar performances.
Nucleic Acids Research | 2018
Donghyuk Kim; Sang Woo Seo; Ye Gao; Hojung Nam; Gabriela I. Guzman; Byung-Kwan Cho; Bernhard O. Palsson
Abstract Two major transcriptional regulators of carbon metabolism in bacteria are Cra and CRP. CRP is considered to be the main mediator of catabolite repression. Unlike for CRP, in vivo DNA binding information of Cra is scarce. Here we generate and integrate ChIP-exo and RNA-seq data to identify 39 binding sites for Cra and 97 regulon genes that are regulated by Cra in Escherichia coli. An integrated metabolic-regulatory network was formed by including experimentally-derived regulatory information and a genome-scale metabolic network reconstruction. Applying analysis methods of systems biology to this integrated network showed that Cra enables optimal bacterial growth on poor carbon sources by redirecting and repressing glycolysis flux, by activating the glyoxylate shunt pathway, and by activating the respiratory pathway. In these regulatory mechanisms, the overriding regulatory activity of Cra over CRP is fundamental. Thus, elucidation of interacting transcriptional regulation of core carbon metabolism in bacteria by two key transcription factors was possible by combining genome-wide experimental measurement and simulation with a genome-scale metabolic model.