Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Holger Gerhardt is active.

Publication


Featured researches published by Holger Gerhardt.


Developmental Cell | 2009

Angiogenesis: A Team Effort Coordinated by Notch

Li-Kun Phng; Holger Gerhardt

The past two decades of angiogenesis research have identified a wealth of pro- and antiangiogenic signals originating from the tissue environment, which control blood vessel density and function. Understanding when and how blood vessels respond to the combination of signals they encounter to achieve a balanced cellular response is a major challenge for the field of developmental and tumor angiogenesis. This review focuses on how endothelial cell-cell communication via the Notch pathway contributes to this signal integration and is essential for functional vessel patterning.


Nature Cell Biology | 2010

Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting

Lars Jakobsson; Claudio A. Franco; Katie Bentley; Russell T. Collins; Bas Ponsioen; Irene M. Aspalter; Ian Rosewell; Marta Busse; Gavin Thurston; Alexander Medvinsky; Stefan Schulte-Merker; Holger Gerhardt

Sprouting angiogenesis requires the coordinated behaviour of endothelial cells, regulated by Notch and vascular endothelial growth factor receptor (VEGFR) signalling. Here, we use computational modelling and genetic mosaic sprouting assays in vitro and in vivo to investigate the regulation and dynamics of endothelial cells during tip cell selection. We find that endothelial cells compete for the tip cell position through relative levels of Vegfr1 and Vegfr2, demonstrating a biological role for differential Vegfr regulation in individual endothelial cells. Differential Vegfr levels affect tip selection only in the presence of a functional Notch system by modulating the expression of the ligand Dll4. Time-lapse microscopy imaging of mosaic sprouts identifies dynamic position shuffling of tip and stalk cells in vitro and in vivo, indicating that the VEGFR–Dll4–Notch signalling circuit is constantly re-evaluated as cells meet new neighbours. The regular exchange of the leading tip cell raises novel implications for the concept of guided angiogenic sprouting.


Journal of Cell Biology | 2008

Wnt/β-catenin signaling controls development of the blood–brain barrier

Stefan Liebner; Monica Corada; Thorsten Bangsow; Jane W. Babbage; Andrea Taddei; Cathrin J. Czupalla; Marco Reis; Angelina Felici; Hartwig Wolburg; Marcus Fruttiger; Makoto M. Taketo; Harald von Melchner; Karl-Heinz Plate; Holger Gerhardt; Elisabetta Dejana

The blood–brain barrier (BBB) is confined to the endothelium of brain capillaries and is indispensable for fluid homeostasis and neuronal function. In this study, we show that endothelial Wnt/β-catenin (β-cat) signaling regulates induction and maintenance of BBB characteristics during embryonic and postnatal development. Endothelial specific stabilization of β-cat in vivo enhances barrier maturation, whereas inactivation of β-cat causes significant down-regulation of claudin3 (Cldn3), up-regulation of plamalemma vesicle-associated protein, and BBB breakdown. Stabilization of β-cat in primary brain endothelial cells (ECs) in vitro by N-terminal truncation or Wnt3a treatment increases Cldn3 expression, BBB-type tight junction formation, and a BBB characteristic gene signature. Loss of β-cat or inhibition of its signaling abrogates this effect. Furthermore, stabilization of β-cat also increased Cldn3 and barrier properties in nonbrain-derived ECs. These findings may open new therapeutic avenues to modulate endothelial barrier function and to limit the devastating effects of BBB breakdown.


Nature | 2008

Angiogenesis selectively requires the p110α isoform of PI3K to control endothelial cell migration

Mariona Graupera; Julie Guillermet-Guibert; Lazaros C. Foukas; Li-Kun Phng; Robert J. Cain; Ashreena Salpekar; Wayne Pearce; Stephen Meek; Jaime Millan; Pedro R. Cutillas; Andrew Smith; Anne J. Ridley; Christiana Ruhrberg; Holger Gerhardt; Bart Vanhaesebroeck

Phosphoinositide 3-kinases (PI3Ks) signal downstream of multiple cell-surface receptor types. Class IA PI3K isoforms couple to tyrosine kinases and consist of a p110 catalytic subunit (p110α, p110β or p110δ), constitutively bound to one of five distinct p85 regulatory subunits. PI3Ks have been implicated in angiogenesis, but little is known about potential selectivity among the PI3K isoforms and their mechanism of action in endothelial cells during angiogenesis in vivo. Here we show that only p110α activity is essential for vascular development. Ubiquitous or endothelial cell-specific inactivation of p110α led to embryonic lethality at mid-gestation because of severe defects in angiogenic sprouting and vascular remodelling. p110α exerts this critical endothelial cell-autonomous function by regulating endothelial cell migration through the small GTPase RhoA. p110α activity is particularly high in endothelial cells and preferentially induced by tyrosine kinase ligands (such as vascular endothelial growth factor (VEGF)-A). In contrast, p110β in endothelial cells signals downstream of G-protein-coupled receptor (GPCR) ligands such as SDF-1α, whereas p110δ is expressed at low level and contributes only minimally to PI3K activity in endothelial cells. These results provide the first in vivo evidence for p110-isoform selectivity in endothelial PI3K signalling during angiogenesis.


Nature Medicine | 2008

Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability

Christopher A. Jones; Nyall R. London; Haoyu Chen; Kye Won Park; Dominique Sauvaget; Rebecca A. Stockton; Joshua D. Wythe; Wonhee Suh; Frederic Larrieu-Lahargue; Yoh Suke Mukouyama; Per Lindblom; Pankaj Seth; Antonio E. Frias; Naoyuki Nishiya; Mark H. Ginsberg; Holger Gerhardt; Kang Zhang; Dean Y. Li

The angiogenic sprout has been compared to the growing axon, and indeed, many proteins direct pathfinding by both structures. The Roundabout (Robo) proteins are guidance receptors with well-established functions in the nervous system; however, their role in the mammalian vasculature remains ill defined. Here we show that an endothelial-specific Robo, Robo4, maintains vascular integrity. Activation of Robo4 by Slit2 inhibits vascular endothelial growth factor (VEGF)-165-induced migration, tube formation and permeability in vitro and VEGF-165-stimulated vascular leak in vivo by blocking Src family kinase activation. In mouse models of retinal and choroidal vascular disease, Slit2 inhibited angiogenesis and vascular leak, whereas deletion of Robo4 enhanced these pathologic processes. Our results define a previously unknown function for Robo receptors in stabilizing the vasculature and suggest that activating Robo4 may have broad therapeutic application in diseases characterized by excessive angiogenesis and/or vascular leak.


Nature | 2011

Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase

Virginia Guarani; Gianluca Deflorian; Claudio A. Franco; Marcus Krüger; Li Kun Phng; Katie Bentley; Louise Toussaint; Franck Dequiedt; Raul Mostoslavsky; Mirko H. H. Schmidt; Barbara Zimmermann; Ralf P. Brandes; Marina Mione; Christoph H. Westphal; Thomas Braun; Andreas M. Zeiher; Holger Gerhardt; Stefanie Dimmeler; Michael Potente

Notch signalling is a key intercellular communication mechanism that is essential for cell specification and tissue patterning, and which coordinates critical steps of blood vessel growth. Although subtle alterations in Notch activity suffice to elicit profound differences in endothelial behaviour and blood vessel formation, little is known about the regulation and adaptation of endothelial Notch responses. Here we report that the NAD+-dependent deacetylase SIRT1 acts as an intrinsic negative modulator of Notch signalling in endothelial cells. We show that acetylation of the Notch1 intracellular domain (NICD) on conserved lysines controls the amplitude and duration of Notch responses by altering NICD protein turnover. SIRT1 associates with NICD and functions as a NICD deacetylase, which opposes the acetylation-induced NICD stabilization. Consequently, endothelial cells lacking SIRT1 activity are sensitized to Notch signalling, resulting in impaired growth, sprout elongation and enhanced Notch target gene expression in response to DLL4 stimulation, thereby promoting a non-sprouting, stalk-cell-like phenotype. In vivo, inactivation of Sirt1 in zebrafish and mice causes reduced vascular branching and density as a consequence of enhanced Notch signalling. Our findings identify reversible acetylation of the NICD as a molecular mechanism to adapt the dynamics of Notch signalling, and indicate that SIRT1 acts as rheostat to fine-tune endothelial Notch responses.


Developmental Cell | 2009

Nrarp Coordinates Endothelial Notch and Wnt Signaling to Control Vessel Density in Angiogenesis

Li Kun Phng; Michael Potente; Jonathan D. Leslie; Jane Babbage; Daniel Nyqvist; Ivan B. Lobov; Jennifer K. Ondr; Sujata Rao; Richard A. Lang; Gavin Thurston; Holger Gerhardt

When and where to make or break new blood vessel connections is the key to understanding guided vascular patterning. VEGF-A stimulation and Dll4/Notch signaling cooperatively control the number of new connections by regulating endothelial tip cell formation. Here, we show that the Notch-regulated ankyrin repeat protein (Nrarp) acts as a molecular link between Notch- and Lef1-dependent Wnt signaling in endothelial cells to control stability of new vessel connections in mouse and zebrafish. Dll4/Notch-induced expression of Nrarp limits Notch signaling and promotes Wnt/Ctnnb1 signaling in endothelial stalk cells through interactions with Lef1. BATgal-reporter expression confirms Wnt signaling activity in endothelial stalk cells. Ex vivo, combined Wnt3a and Dll4 stimulation of endothelial cells enhances Wnt-reporter activity, which is abrogated by loss of Nrarp. In vivo, loss of Nrarp, Lef1, or endothelial Ctnnb1 causes vessel regression. We suggest that the balance between Notch and Wnt signaling determines whether to make or break new vessel connections.


Organogenesis | 2008

VEGF and Endothelial Guidance in Angiogenic Sprouting

Holger Gerhardt

The cellular actions of VEGF need to be coordinated to guide vascular patterning during sprouting angiogenesis. Individual endothelial tip cells lead and guide the blood vessel sprout, while neighboring stalk cells proliferate and form the vascular lumen. Recent studies illustrate how endothelial DLL4/NOTCH signalling, stimulated by VEGF, regulates the sprouting response by limiting tip cell formation in the stalk. The spatial distribution of VEGF, in turn, regulates the shape of the ensuing sprout by directing tip cell migration and determining stalk cell proliferation.


Journal of Clinical Investigation | 2008

Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice

Jianxin Fu; Holger Gerhardt; J. Michael McDaniel; Baoyun Xia; Xiaowei Liu; Lacramioara Ivanciu; Annelii Ny; Karlien Hermans; Robert Silasi-Mansat; Samuel McGee; Emma Nye; Tongzhong Ju; Maria I. Ramirez; Peter Carmeliet; Richard D. Cummings; Florea Lupu; Lijun Xia

Mucin-type O-glycans (O-glycans) are highly expressed in vascular ECs. However, it is not known whether they are important for vascular development. To investigate the roles of EC O-glycans, we generated mice lacking T-synthase, a glycosyltransferase encoded by the gene C1galt1 that is critical for the biosynthesis of core 1-derived O-glycans, in ECs and hematopoietic cells (termed here EHC T-syn(-/-) mice). EHC T-syn(-/-) mice exhibited embryonic and neonatal lethality associated with disorganized and blood-filled lymphatic vessels. Bone marrow transplantation and EC C1galt1 transgene rescue demonstrated that lymphangiogenesis specifically requires EC O-glycans, and intestinal lymphatic microvessels in EHC T-syn(-/-) mice expressed a mosaic of blood and lymphatic EC markers. The level of O-glycoprotein podoplanin was significantly reduced in EHC T-syn(-/-) lymphatics, and podoplanin-deficient mice developed blood-filled lymphatics resembling EHC T-syn(-/-) defects. In addition, postnatal inactivation of C1galt1 caused blood/lymphatic vessel misconnections that were similar to the vascular defects in the EHC T-syn(-/-) mice. One consequence of eliminating T-synthase in ECs and hematopoietic cells was that the EHC T-syn(-/-) pups developed fatty liver disease, because of direct chylomicron deposition via misconnected portal vein and intestinal lymphatic systems. Our studies therefore demonstrate that EC O-glycans control the separation of blood and lymphatic vessels during embryonic and postnatal development, in part by regulating podoplanin expression.


Cold Spring Harbor Perspectives in Medicine | 2013

VEGF and Notch in Tip and Stalk Cell Selection

Raquel Blanco; Holger Gerhardt

Sprouting angiogenesis is a dynamic process in which endothelial cells collectively migrate, shape new lumenized tubes, make new connections, and remodel the nascent network into a hierarchically branched and functionally perfused vascular bed. Endothelial cells in the nascent sprout adopt two distinct cellular phenotypes--known as tip and stalk cells--with specialized functions and gene expression patterns. VEGF and Notch signaling engage in an intricate cross talk to balance tip and stalk cell formation and to regulate directed tip cell migration and stalk cell proliferation. In this article, we summarize the current knowledge and implications of the tip/stalk cell concepts and the quantitative and dynamic integration of VEGF and Notch signaling in tip and stalk cell selection.

Collaboration


Dive into the Holger Gerhardt's collaboration.

Top Co-Authors

Avatar

Peter Carmeliet

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Mieke Dewerchin

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Karlien Hermans

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

John C. Moore

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Nathan D. Lawson

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Liebner

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Filip Claes

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Ilse Geudens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Inmaculada Segura

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge