Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Holger Haubenreisser is active.

Publication


Featured researches published by Holger Haubenreisser.


Radiology | 2014

Closing in on the K Edge: Coronary CT Angiography at 100, 80, and 70 kV—Initial Comparison of a Second- versus a Third-Generation Dual-Source CT System

Mathias Meyer; Holger Haubenreisser; U. Joseph Schoepf; Rozemarijn Vliegenthart; Christianne Leidecker; Thomas Allmendinger; Ralf Lehmann; Sonja Sudarski; Martin Borggrefe; Stefan O. Schoenberg; Thomas Henzler

PURPOSE To prospectively evaluate radiation and contrast medium requirements for performing high-pitch coronary computed tomographic (CT) angiography at 70 kV using a third-generation dual-source CT system in comparison to a second-generation dual-source CT system. MATERIALS AND METHODS All patients gave informed consent for this institutional review board-approved study. Forty-five patients (median age, 52 years; 27 men) were imaged in high-pitch mode with a third-generation dual-source CT system at 70 kV (n = 15) or with a second-generation dual-source CT system at 80 or 100 kV (n = 15 for each). Tube voltage was based on body mass index: 80 or 70 kV for less than 26 kg/m(2) versus 100 kV for 26-30 kg/m(2). For the 80- and 100-kV protocols, 80 mL of contrast material was injected, versus 45 mL for the 70-kV protocol. Data were reconstructed by using a second-generation iterative reconstruction algorithm for second-generation dual-source CT and a recently introduced third-generation iterative reconstruction algorithm for third-generation dual-source CT. Objective image quality was measured for various regions of interest, and subjective image quality was evaluated with a five-point Likert scale. RESULTS The signal-to-noise ratio of the coronary CT angiography studies acquired with 70 kV was significantly higher (70 kV: 14.3-17.6 vs 80 kV: 7.1-12.9 vs 100 kV: 9.8-12.9; P < .0497) than those acquired with the other two protocols for all coronary arteries. Qualitative image quality analyses revealed no significant differences between the three CT angiography protocols (median score, 5; P > .05). The mean effective dose was 75% and 108% higher (0.92 mSv ± 0.3 [standard deviation] and 0.78 mSv ± 0.2 vs 0.44 mSv ± 0.1; P < .0001), respectively, for the 80- and 100-kV CT angiography protocols than for the 70-kV CT angiography protocol. CONCLUSION In nonobese patients, third-generation high-pitch coronary dual-source CT angiography at 70 kV results in robust image quality for studying the coronary arteries, at significantly reduced radiation dose (0.44 mSv) and contrast medium volume (45 mL), thus enabling substantial radiation dose and contrast medium savings as compared with second-generation dual-source CT.


European Journal of Radiology | 2014

Value of monoenergetic low-kV dual energy CT datasets for improved image quality of CT pulmonary angiography

Paul Apfaltrer; Sonja Sudarski; David Schneider; John W. Nance; Holger Haubenreisser; Christian Fink; Stefan O. Schoenberg; Thomas Henzler

PURPOSE High vessel attenuation and high contrast-to-noise ratio (CNR) are prerequisites for high diagnostic confidence in CT pulmonary angiography (CTPA). This study evaluated the impact of calculated monoenergetic dual-energy (DE) CTPA datasets on vessel attenuation and CNR. MATERIALS AND METHODS 50 Patients (24 men, mean age 68 ± 14 years) who underwent DE-CTPA were retrospectively included in this study. The 80 and 140-kV DE polyenergetic image data were used to calculate virtual monoenergetic image datasets in 10 kiloelectron volt (keV) increments from 40 to 120 keV. Vessel and soft tissue attenuation and image noise were measured in various regions of interest and the CNR was subsequently calculated. Differences in vessel attenuation and CNR were compared between the different monoenergetic datasets. The best monoenergetic dataset was then compared to the standard 120-kV polyenergetic dataset. RESULTS Vessel attenuation and CNR of 70-keV CTPA datasets were superior to all other monoenergetic image datasets (all p<0.05). 70-keV monoenergetic datasets provided a statistically significant 12% increase in mean vessel attenuation compared to standard 120-kV polyenergetic datasets (384 ± 117 HU vs. 342 ± 106 HU, respectively; p<0.0001) and a statistically significant 18% increase in mean CNR (29 ± 13 vs. 24 ± 11 respectively; p<0.0001). CONCLUSION Virtual 70-keV monoenergetic CTPA image datasets significantly increase vessel attenuation and CNR of DE-CTPA studies, suggesting that clinical application of low-keV monoenergetic reconstructions may allow a decrease in the amount of iodinated contrast required for adequate image quality in DE-CTPA examinations.


Academic Radiology | 2014

Optimization of Kiloelectron Volt Settings in Cerebral and Cervical Dual-energy CT Angiography Determined with Virtual Monoenergetic Imaging

David Schneider; Paul Apfaltrer; Sonja Sudarski; John W. Nance; Holger Haubenreisser; Christian Fink; Stefan O. Schoenberg; Thomas Henzler

RATIONALE AND OBJECTIVES Dual-energy computed tomography (DECT) offers various fields of application, especially in angiography using virtual monoenergetic imaging. The aim of this study was to evaluate objective image quality indices of calculated low-kiloelectron volt monoenergetic DECT angiographic cervical and cerebral data sets compared to virtual 120-kV polyenergetic images. MATERIALS AND METHODS Forty-one patients (21 men, mean age 58 ± 14) who underwent DECT angiography of the cervical (n = 7) or cerebral vessels (n = 34) were retrospectively included in this study. Data acquired with the 80 and 140 kVp tube using dual-source CT technology were subsequently used to calculate low-kiloelectron volt monoenergetic image data sets ranging from 120 to 40 keV (at 10-keV intervals per patient). Vessel and soft tissue attenuation and image noise were measured in various regions of interest, and contrast-to-noise ratio (CNR) was subsequently calculated. Differences in image attenuation and CNR were compared between the different monoenergetic data sets and virtual 120-kV polyenergetic images. RESULTS For cervical angiography, 60-keV monoenergetic data sets resulted in the greatest improvements in vessel attenuation and CNR compared to virtual 120-kV polyenergetic data sets (+40%, +16%; all P < .01). Also for cerebral vessel assessment, 60-keV monoenergetic data sets provided the greatest improvement in vessel attenuation and CNR (+40%, +9%; all P < .01) compared to virtual 120-kV polyenergetic data sets. CONCLUSIONS 60-keV monoenergetic image data significantly improve vessel attenuation and CNR of cervical and cerebral DECT angiographic studies. Future studies have to evaluate whether the technique can lead to an increased diagnostic accuracy or should be used for dose reduction of iodinated contrast material.


European Journal of Radiology | 2015

Unenhanced third-generation dual-source chest CT using a tin filter for spectral shaping at 100 kVp

Holger Haubenreisser; Mathias Meyer; Sonja Sudarski; Thomas Allmendinger; Stefan O. Schoenberg; Thomas Henzler

OBJECTIVE To prospectively investigate image quality and radiation dose of 100kVp spectral shaping chest CT using a dedicated tin filter on a 3rd generation dual-source CT (DSCT) in comparison to standard 100kVp chest CT. METHODS Sixty patients referred for a non-contrast chest on a 3rd generation DSCT were prospectively included and examined at 100kVp with a dedicated tin filter. These patients were retrospectively matched with patients that were examined on a 2nd generation DSCT at 100kVp without tin filter. Objective and subjective image quality was assessed in various anatomic regions and radiation dose was compared. RESULTS Radiation dose was decreased by 90% using the tin filter (3.0 vs 0.32mSv). Soft tissue attenuation and image noise was not statistically different for both examination techniques (p>0.05), however image noise was found to be significantly higher in the trachea when using the additional tin filter (p=0.002). SNR was found to be statistically similar in pulmonary tissue, significantly lower when measured in air and significantly higher in the aorta for the scans on the 3rd generation DSCT. Subjective image quality with regard to overall quality and image noise and sharpness was not statistically significantly different (p>0.05). CONCLUSION 100kVp spectral shaping chest CT by means of a tube-based tin-filter on a 3rd generation DSCT allows 90% dose reduction when compared to 100kVp chest CT on a 2nd generation DSCT without spectral shaping.


European Journal of Radiology | 2014

Feasibility of slice width reduction for spiral cranial computed tomography using iterative image reconstruction.

Holger Haubenreisser; Christian Fink; John W. Nance; Martin Sedlmair; Bernhard Schmidt; Stefan O. Schoenberg; Thomas Henzler

PURPOSE To prospectively compare image quality of cranial computed tomography (CCT) examinations with varying slice widths using traditional filtered back projection (FBP) versus sinogram-affirmed iterative image reconstruction (SAFIRE). MATERIALS AND METHODS 29 consecutive patients (14 men, mean age: 72 ± 17 years) referred for a total of 40 CCT studies were prospectively included. Each CCT raw data set was reconstructed with FBP and SAFIRE at 5 slice widths (1-5mm; 1mm increments). Objective image quality was assessed in three predefined regions of the brain (white matter, thalamus, cerebellum) using identical regions of interest (ROIs). Subjective image quality was assessed by 2 experienced radiologists. Objective and subjective image quality parameters were statistically compared between FBP and SAFIRE reconstructions. RESULTS SAFIRE reconstructions resulted in mean noise reductions of 43.8% in the white matter, 45.6% in the thalamus and 42.0% in the cerebellum (p<0.01) compared to FBP on non contrast-enhanced 1mm slice width images. Corresponding mean noise reductions on 1mm contrast-enhanced studies were 45.7%, 47.3%, and 45.0% in the white matter, thalamus, and cerebellum, respectively (p<0.01). There was no significant difference in mean attenuation of any region or slice width between the two reconstruction methods (all p>0.05). Subjective image quality of IR images was mostly rated higher than that of the FBP images. CONCLUSION Compared to FBP, SAFIRE provides significant reductions in image noise while increasing subjective image in CCT, particularly when thinner slices are used. Therefore, SAFIRE may allow utilization of thinner slices in CCT, potentially reducing partial volume effects and improving diagnostic accuracy.


Investigative Radiology | 2016

Radiation Dose Comparison Between 70 kVp and 100 kVp With Spectral Beam Shaping for Non-Contrast-Enhanced Pediatric Chest Computed Tomography: A Prospective Randomized Controlled Study.

Meike Weis; Thomas Henzler; John W. Nance; Holger Haubenreisser; Mathias Meyer; Sonja Sudarski; Stefan O. Schoenberg; K. Wolfgang Neff; Claudia Hagelstein

Objective The aim of this prospective randomized controlled study was to compare 2 techniques for radiation dose reduction in non–contrast-enhanced pediatric chest computed tomography (CT): low peak kilovoltage imaging at 70 kVp and spectral beam shaping at 100 kVp using a dedicated tin filter (100-kVp Sn). Materials and Methods All chest CT examinations were performed on a third-generation dual-source CT system (SOMATOM Force; Siemens Healthineers, Germany). Fifty children (mean age, 6.8 ± 5.1 years) were examined using the 100-kVp Sn protocol, whereas 25 children received the 70-kVp protocol (mean age, 5.7 ± 5.2 years; 2:1 randomization scheme). Radiation metrics and organ doses were compared between acquisition techniques using commercially available radiation dose analysis software (Radimetrics Inc, Bayer AG, Toronto, Ontario, Canada). Objective image quality, expressed by signal-to-noise ratio and subjective image quality based on a 4-point scale (1, best; 4, worst image quality), were compared. Results Volume CT dose index and size-specific dose estimate were significantly lower in the 100-kVp Sn group compared with the 70-kVp group (0.19 ± 0.12 mGy vs 0.81 ± 0.70 mGy and 0.34 ± 0.13 mGy vs 1.48 ± 1.11 mGy; P < 0.0001 for both). Accordingly, mean effective dose was significantly lower for the 100-kVp Sn examinations (0.21 ± 0.10 mSv) compared with the 70-kVp examinations (0.83 ± 0.49 mSv; P < 0.0001). Calculated organ doses were also significantly lower using the 100-kVp Sn protocol when compared with the 70-kVp protocol; for example, breast dose was reduced by a factor of 4.3. Signal-to-noise ratio was slightly superior for 70-kVp images while lung image quality of the 100-kVp Sn protocol was preferred in subjective analysis (P = 0.0004). Conclusions Pediatric chest CT performed at 100 kVp with an additional tin filter for spectral shaping significantly reduces radiation dose when compared with low peak kilovoltage imaging at 70 kVp and therefore should be preferred in non–contrast-enhanced pediatric chest CT examinations, particularly (given the improved subjective image quality) when the main focus is evaluation of the lung parenchyma.


European Journal of Radiology | 2016

Carotid dual-energy CT angiography: Evaluation of low keV calculated monoenergetic datasets by means of a frequency-split approach for noise reduction at low keV levels

Philipp Riffel; Holger Haubenreisser; Mathias Meyer; Sonja Sudarski; John N. Morelli; Bernhard Schmidt; Stefan O. Schoenberg; Thomas Henzler

BACKGROUND AND PURPOSE Calculated monoenergetic ultra-low keV datasets did not lead to improved contrast-to-noise ratio (CNR) due to the dramatic increase in image noise. The aim of the present study was to evaluate the objective image quality of ultra-low keV monoenergetic images (MEIs) calculated from carotid DECT angiography data with a new monoenergetic imaging algorithm using a frequency-split technique. MATERIALS AND METHODS 20 patients (12 male; mean age 53±17 years) were retrospectively analyzed. MEIs from 40 to 120 keV were reconstructed using the monoenergetic split frequency approach (MFSA). Additionally MEIs were reconstructed for 40 and 50 keV using a conventional monoenergetic (CM) software application. Signal intensity, noise, signal-to-noise ratio (SNR) and CNR were assessed in the basilar, common, internal carotid arteries. RESULTS Ultra-low keV MEIs at 40 keV and 50 keV demonstrated highest vessel attenuation, significantly greater than those of the polyenergetic images (PEI) (all p-values <0.05). The highest SNR level and CNR level was found at 40 keV and 50 keV (all p-values <0.05). MEIs with MFSA showed significantly lower noise levels than those processed with CM (all p-values <0.05) and no significant differences in vessel attenuation (p>0.05). Thus MEIs with MFSA showed significantly higher SNR and CNR compared to MEIs with CM. CONCLUSION Combining the lower spatial frequency stack for contrast at low keV levels with the high spatial frequency stack for noise at high keV levels (frequency-split technique) leads to improved image quality of ultra-low keV monoenergetic DECT datasets when compared to previous monoenergetic reconstruction techniques without the frequency-split technique.


European Journal of Radiology | 2015

Where do we stand? Functional imaging in acute and chronic pulmonary embolism with state-of-the-art CT

Mathias Meyer; Holger Haubenreisser; Sonja Sudarski; Christina Doesch; Melissa Ong; Martin Borggrefe; Stefan O. Schoenberg; Thomas Henzler

Nowadays, CT pulmonary angiography (CTPA) is the diagnostic imaging modality of choice for acute and chronic pulmonary embolism (PE) in order to assess vascular anatomy and parenchymal morphology. Over the past decade, several prognostic CTPA markers associated with an increased risk of adverse clinical events and in-hospital mortality have been evaluated, namely cardiac chamber dimensions, obstruction scores, and visualization of iodinated contrast material in the lung parenchyma by dual-energy (DE) CTPA. This article reviews the current status and potential prognostic advantages of CTPA or DE CTPA with its recent developments for accessing right ventricular dysfunction and the assessment of first pass lung perfusion with DE CTPA in the diagnosis of acute and chronic PE.


Radiology | 2017

Free-breathing Sparse Sampling Cine MR Imaging with Iterative Reconstruction for the Assessment of Left Ventricular Function and Mass at 3.0 T

Sonja Sudarski; Thomas Henzler; Holger Haubenreisser; Christina Dösch; Michael O. Zenge; Michaela Schmidt; Mariappan S. Nadar; Martin Borggrefe; Stefan O. Schoenberg; Theano Papavassiliu

Purpose To prospectively evaluate the accuracy of left ventricle (LV) analysis with a two-dimensional real-time cine true fast imaging with steady-state precession (trueFISP) magnetic resonance (MR) imaging sequence featuring sparse data sampling with iterative reconstruction (SSIR) performed with and without breath-hold (BH) commands at 3.0 T. Materials and Methods Ten control subjects (mean age, 35 years; range, 25-56 years) and 60 patients scheduled to undergo a routine cardiac examination that included LV analysis (mean age, 58 years; range, 20-86 years) underwent a fully sampled segmented multiple BH cine sequence (standard of reference) and a prototype undersampled SSIR sequence performed during a single BH and during free breathing (non-BH imaging). Quantitative analysis of LV function and mass was performed. Linear regression, Bland-Altman analysis, and paired t testing were performed. Results Similar to the results in control subjects, analysis of the 60 patients showed excellent correlation with the standard of reference for single-BH SSIR (r = 0.93-0.99) and non-BH SSIR (r = 0.92-0.98) for LV ejection fraction (EF), volume, and mass (P < .0001 for all). Irrespective of breath holding, LV end-diastolic mass was overestimated with SSIR (standard of reference: 163.9 g ± 58.9, single-BH SSIR: 178.5 g ± 62.0 [P < .0001], non-BH SSIR: 175.3 g ± 63.7 [P < .0001]); the other parameters were not significantly different (EF: 49.3% ± 11.9 with standard of reference, 48.8% ± 11.8 with single-BH SSIR, 48.8% ± 11 with non-BH SSIR; P = .03 and P = .12, respectively). Bland-Altman analysis showed similar measurement errors for single-BH SSIR and non-BH SSIR when compared with standard of reference measurements for EF, volume, and mass. Conclusion Assessment of LV function with SSIR at 3.0 T is noninferior to the standard of reference irrespective of BH commands. LV mass, however, is overestimated with SSIR.


European Journal of Radiology | 2015

From 3D to 4D: Integration of temporal information into CT angiography studies

Holger Haubenreisser; Amir K. Bigdeli; Mathias Meyer; Thomas Kremer; Thomas Riester; Ulrich Kneser; Stefan O. Schoenberg; Thomas Henzler

CT angiography is the current clinical standard for the imaging many vascular illnesses. This is traditionally done with a single arterial contrast phase. However, advances in CT technology allow for a dynamic acquisition of the contrast bolus, thus adding temporal information to the examination. The aim of this article is to highlight the clinical possibilities of dynamic CTA using 2 examples. The accuracy of the detection and quantification of stenosis in patients with peripheral arterial occlusive disease, especially in stadium III and IV, is significantly improved when performing dynamic CTA examinations. The post-interventional follow-up of examinations of EVAR benefit from dynamic information, allowing for a higher sensitivity and specificity, as well as allowing more accurate classification of potential endoleaks. The described radiation dose for these dynamic examinations is low, but this can be further optimized by using lower tube voltages. There are a multitude of applications for dynamic CTA that need to be further explored in future studies.

Collaboration


Dive into the Holger Haubenreisser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John W. Nance

Medical University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge