Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Holly A. LaVoie is active.

Publication


Featured researches published by Holly A. LaVoie.


Experimental Biology and Medicine | 2009

Transcriptional Regulation of Steroidogenic Genes: STARD1, CYP11A1 and HSD3B

Holly A. LaVoie; Steven R. King

Expression of the genes that mediate the first steps in steroidogenesis, the steroidogenic acute regulatory protein (STARD1), the cholesterol side-chain cleavage enzyme, cytochrome P450scc (CYP11A1) and 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (HSD3B), is tightly controlled by a battery of transcription factors in the adrenal cortex, the gonads and the placenta. These genes generally respond to the same hormones that stimulate steroid production through common pathways such as cAMP signaling and common actions on their promoters by proteins such as NR5A and GATA family members. However, there are distinct temporal, tissue and species-specific differences in expression between the genes that are defined by combinatorial regulation and unique promoter elements. This review will provide an overview of the hormonal and transcriptional regulation of the STARD1, CYP11A1 and specific steroidogenic HSD3B genes in the adrenal, testis, ovary and placenta and discuss the current knowledge regarding the key transcriptional factors involved.


Experimental Biology and Medicine | 2003

The role of GATA in mammalian reproduction.

Holly A. LaVoie

GATA transcription factors are emerging as critical players in mammalian reproductive development and function. GATA-4 contributes to fetal male gonadal development by regulating genes mediating Müllerian duct regression and the onset of testosterone production. GATA-2 expression appears to be sexually dimorphic being transiently expressed in the germ cell lineage of the fetal ovary but not the fetal testis. In the reproductive system, GATA-1 is exclusively expressed in Sertoli cells at specific seminiferous tubule stages. In addition, GATA-4 and GATA-6 are localized primary to ovarian and testicular somatic cells. The majority of cell transfection studies demonstrate that GATA-1 and GATA-4 can stimulate inhibin subunit gene promoter constructs. Other studies provide strong evidence that GATA-4 and GATA-6 can activate genes mediating gonadal cell steroidogenesis. GATA-2 and GATA-3 are found in pituitary and placental cells and can regulate α-glycoprotein subunit gene expression. Gonadal expression and activation of GATAs appear to be regulated in part by gonadotropin signaling via the cyclic AMP-protein kinase A pathway. This review will cover the current knowledge regarding GATA expression and function at all levels of the reproductive axis.


Biology of Reproduction | 2003

GATA-4 and GATA-6 Transcription Factors: Expression, Immunohistochemical Localization, and Possible Function in the Porcine Ovary

Carolina Gillio-Meina; Yvonne Y. Hui; Holly A. LaVoie

Abstract The expression and localization of GATA-4 and GATA-6 mRNAs and proteins were assessed in porcine ovaries at different stages of the estrous cycle. Reverse transcription polymerase chain reaction and Western blot analyses revealed that GATA-4 and GATA-6 transcripts and proteins were strongly expressed in granulosa cells isolated from antral follicles, intact antral follicles, corpora hemorrhagica (CH), and midluteal phase corpora lutea (CL). Immunoblot analyses showed two predominant proteins with molecular masses of approximately 53 and 55 kDa for GATA-4 and one 55-kDa protein for GATA-6. Immunohistochemical studies revealed GATA-4 and GATA-6 nuclear staining in granulosa cells of healthy primordial and primary antral follicles and antral follicle of various sizes. The percentage of immunopositive thecal cell nuclei increased with follicular development. In CH and CL, luteal cells displayed nuclear immunoreactivity for both transcription factors. Regressing CL showed a decrease in GATA-immunopositive cells. Immunoreactivity for GATA-4 and GATA-6 was present in most blood vessels. In electrophoretic mobility shift assays, nuclear protein extracts isolated from granulosa cells and CL exhibited both GATA-4 and GATA-6 binding to a GATA consensus oligonucleotide, with GATA-4 the predominant binding protein. GATA-4 and GATA-6 DNA binding was elevated in granulosa cell nuclear extracts from preovulatory (8–10 mm) follicles. Cotransfection of primary cultures of luteinizing granulosa cells with GATA-4 or GATA-6 expression vectors increased the activity of the porcine steroidogenic acute regulatory protein gene promoter significantly but did not significantly activate the inhibin α gene promoter. The detection of GATA-4 and GATA-6 mRNAs and proteins in porcine ovaries and the identification of at least one possible target gene may help to establish roles for these GATA factors in follicular development and luteal function.


Molecular Pharmacology | 2011

Resveratrol Restores Nrf2 Level and Prevents Ethanol-Induced Toxic Effects in the Cerebellum of a Rodent Model of Fetal Alcohol Spectrum Disorders

Ambrish Kumar; Chandra K. Singh; Holly A. LaVoie; Donald J. DiPette; Ugra S. Singh

In humans, ethanol exposure during pregnancy produces a wide range of abnormalities in infants collectively known as fetal alcohol spectrum disorders (FASD). Neuronal malformations in FASD manifest as postnatal behavioral and functional disturbances. The cerebellum is particularly sensitive to ethanol during development. In a rodent model of FASD, high doses of ethanol (blood ethanol concentration 80 mM) induces neuronal cell death in the cerebellum. However, information on potential agent(s) that may protect the cerebellum against the toxic effects of ethanol is lacking. Growing evidence suggests that a polyphenolic compound, resveratrol, has antioxidant and neuroprotective properties. Here we studied whether resveratrol (3,5,4′-trihydroxy-trans-stilbene), a phytoalexin found in red grapes and blueberries, protects the cerebellar granule neurons against ethanol-induced cell death. In the present study, we showed that administration of resveratrol (100 mg/kg) to postnatal day 7 rat pups prevents ethanol-induced apoptosis by scavenging reactive oxygen species in the external granule layer of the cerebellum and increases the survival of cerebellar granule cells. It restores ethanol-induced changes in the level of transcription factor nuclear factor-erythroid derived 2-like 2 (nfe2l2, also known as Nrf2) in the nucleus. This in turn retains the expression and activity of its downstream gene targets such as NADPH quinine oxidoreductase 1 and superoxide dismutase in cerebellum of ethanol-exposed pups. These studies indicate that resveratrol exhibits neuroprotective effects in cerebellum by acting at redox regulating proteins in a rodent model of FASD.


Endocrinology | 2000

Concerted regulation of steroidogenic acute regulatory gene expression by luteinizing hormone and insulin (or insulin-like growth factor I) in primary cultures of porcine granulosa-luteal cells

N. Sekar; Holly A. LaVoie; Johannes D. Veldhuis

The steroidogenic acute regulatory (StAR) protein is indispensable for maximal trophic hormone-stimulated steroidogenesis by the adrenal gland, testis, and ovary. Recently, our laboratory developed an in vitro primary culture system of porcine granulosa-luteal cells that retain responsiveness to LH and show LH and insulin [or insulin-like growth factor (IGF-I)] synergy in stimulating StAR messenger RNA accumulation. Here, we examine the mechanisms subserving this LH-insulin (IGF-I) augmentation. We corroborate LH’s amplification of insulin as well as IGF-I-stimulated granulosa-luteal cell progesterone and cAMP accumulation (P , 0.001). Insulin or IGF-I elevated LH receptor transcript accumulation, and LH did not alter this effect. To determine the hormonal responsiveness of StAR promoter, truncated regions of the 21423 to 1130 bp upstream sequence of the porcine gene were ligated into a firefly luciferase reporter plasmid. Transient transfection of the StAR plasmid containing the full-length porcine 59-flanking region of StAR (pStAR1423/luc) showed superadditive stimulation by LH and insulin or IGF-I after 24 h. LH, but not insulin or IGF-I alone, stimulated pStAR1423/luc activity. Deletion of the proximal putative steroidogenic factor-1 (248 to 241) site abolished hormonally driven StAR promoter activity. A stable cAMP analog, 8-bromo-cAMP (1 mM), and insulin/IGF-I also evoked supraadditive StAR promoter expression. To further explore the role of cAMP in LH-insulin (or IGF-I) actions, we cotransfected a Rous sarcoma virus (RSV)-driven minigene encoding the heat-stable inhibitor of the cAMP-dependent protein kinase (RSV/ PKI) or a mutant plasmid (RSV/PKImut) along with the pStAR1423/ luc promoter construct. Cotransfection of PKI, but not PKImut, with pStAR1423/luc significantly attenuated LH’s stimulation of luciferase activity and also reduced the magnitude of the transcriptional amplification exerted by LH and insulin or IGF-I. In corollary analyses of the protein kinase A (PKA) pathway, cotransfection of fulllength pStAR1423/luc and a complementary DNA encoding a constitutively activated PKA catalytic subunit elevated basal and insulin (or IGF-I)-stimulated StAR promoter expression. LH and insulin (or IGF-I) also augmented steady state StAR transcript levels, as assessed by homologous RT-PCR, and StAR protein concentrations, as evaluated by Western blotting. Together, these investigations document a significant role for insulin or IGF-I in enhancing LH-stimulated progesterone and cAMP biosynthesis and endogenous StAR message and protein accumulation and in augmenting cAMP-PKA-dependent transcriptional activation of the exogenous StAR promoter. (Endocrinology 141: 3983‐ 3992, 2000)


Molecular and Cellular Endocrinology | 2004

Expression of the GATA-4 and GATA-6 transcription factors in the fetal rat gonad and in the ovary during postnatal development and pregnancy

Holly A. LaVoie; George L. Mccoy; Charles A. Blake

Immunohistochemical studies were undertaken to determine the distribution of GATA-4 and GATA-6 in rat fetal gonad and the postnatal ovary during development and pregnancy. In the undifferentiated gonad, GATA-4 was expressed in the somatic cells of both sexes. After differentiation of the ovary and testis, GATA-4 expression continued in both ovarian and testicular somatic cells; whereas, GATA-6 was expressed in both somatic and germ cells. In the ovary of postnatal rats, granulosa and thecal cells of healthy follicles expressed both GATA factors. In the adult rat, GATA-4 expression was lower in corpora lutea as compared to follicles; whereas, GATA-6 was strongly expressed in both structures. GATA-4 expression was greater in functional corpora lutea than regressing corpora lutea. GATA-6 was expressed in both functional and regressing corpora lutea. In all postnatal ovaries, the expression of P450scc localized with tissue expressing GATA-4 and/or GATA-6, but GATA expression also occurred in P450scc negative cells.


Molecular and Cellular Endocrinology | 2005

Epigenetic control of ovarian function: The emerging role of histone modifications

Holly A. LaVoie

The dynamic nature of the ovarian follicle makes it an ideal model to study the coordinated activation and inactivation of genes related to cell growth and differentiation. Much progress has been made in identifying transcription factors that promote the transcription of ovarian genes mediating gonadotropin action and steroidogenesis, but how these factors promote transcription in the context of chromatin is not well understood. Over the past 5 years, epigenetic regulation of ovarian genes through histone modifications has been the focus of an increasing number of studies. Several coactivators and corepressors associated with transcription factors are in fact histone acetyltransferases and histone deacetylases mediating the hyperacetylation and hypoacetylation of histones, respectively. Hyperacetylation of lysine residues in the core histone tails promotes chromatin alterations that favor transcription, whereas hypoacetylation of histones promotes gene silencing or repression. Not only does the acetylation status of the core histones determine whether chromatin remodeling occurs, but histone phosphorylation and methylation may serve equally important roles. For example, the combination of histone H3 phosphorylation and acetylation concertedly favors transcription. In addition, specific lysine methylations (e.g., K9 of histone H3) repress gene expression whereas other methylations promote gene expression. It is most likely the combination of histone modification events that regulate the initiation of transcription. Understanding how ovarian hormones control specific histone modifications will help us understand how follicular cells can switch from active gene pools governing cell proliferation to those gene groups controlling terminal differentiation. Progress in elucidating the ovarian specific regulation of histone modifying enzymes as well as identification of their target gene pools at different stages of the follicular cycle is expected in the next few years.


Molecular Nutrition & Food Research | 2011

Resveratrol prevents embryonic oxidative stress and apoptosis associated with diabetic embryopathy, and improves glucose and lipid profile of diabetic dam

Chandra K. Singh; Ambrish Kumar; David B. Hitchcock; Daping Fan; Richard L. Goodwin; Holly A. LaVoie; Prakash S. Nagarkatti; Donald J. DiPette; Ugra S. Singh

SCOPE Diabetic embryopathy, a consequence of diabetic pregnancy, is associated with increase in embryonic oxidative stress and apoptosis, which lead to severe embryonic damage at early stage of organogenesis. METHODS AND RESULTS This study investigated if resveratrol, found in red grapes and blue-berries, may prevent diabetes-induced oxidative stress and apoptosis in embryos and have beneficial effects in diabetic dams. A rodent model of diabetic embryopathy was used. Diabetes was associated with lowered reduced glutathione levels (26.98%), increased total thiol (100.47%) and lipid peroxidation (124.73%) in embryos, and increased blood sugar (384.03%), cholesterol (98.39%) and triglyceride (1025.35%) in diabetic dams. Increased apoptosis (272.20%) was also observed in the embryos of diabetic dams. Administration of resveratrol (100 mg/kg body weight (b.w.)) during pregnancy prevented both oxidative stress and apoptosis in embryos. Resveratrol reduced embryonic maldevelopment by improving embryo weight (41.23%), crown rump length (16.50%) and somite number (11.22%). It further improved the glucose (33.32%) and lipid (cholesterol 41.74%, triglyceride 60.64%) profile of the diabetic dams, which also represents the protective role of resveratrol in diabetes. CONCLUSION Resveratrol was found to prevent embryonic oxidative stress and apoptosis. It also improved glucose and lipid profile of diabetic dams, indicating the beneficial effects in diabetic pregnancy.


Frontiers in Bioscience | 2012

Gonadal transactivation of STARD1, CYP11A1 and HSD3B.

King; Holly A. LaVoie

The steroidogenic acute regulatory protein, cytochrome P450 cholesterol side-chain cleavage enzyme and specific 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerases initiate the essential process of steroidogenesis in the gonads. Testicular and ovarian expression of their respective genes, STARD1, CYP11A1 and gonadal HSD3B, is primarily controlled by gonadotropins with contributions by various growth factors. Gonadotropins through their receptors switch on cyclic AMP signaling pathways that recruit NR5A, GATA and often CREB, NR4A, or Sp1 transcription factors to regulatory regions of each genes promoter to elicit transcription. The specific combination of transcription factors involved depends on the cellular context. In this review, we summarize current understanding of the factors that control transactivation of the STARD1, CYP11A1 and gonadal HSD3B genes in Leydig cells in the testis and the theca, differentiating granulosa and luteal cells in the ovary.


Biology of Reproduction | 2002

Cloning and Characterization of Porcine Ovarian Estrogen Receptor β Isoforms

Holly A. LaVoie; Dennis C. DeSimone; Carolina Gillio-Meina; Yvonne Y. Hui

Abstract The cDNA for the full-length porcine estrogen receptor β (ERβ) and an alternatively spliced transcript with a deletion of exon 5 (ERβδ5) was cloned from pig ovary. RNase protection assays revealed that ERβ mRNA was expressed in the preovulatory follicles and early, midluteal, and regressing corpora lutea (CL) of eCG ± hCG-primed gilts. ERβ and ERβδ5 transcripts were shown by semiquantitative reverse transcription polymerase chain reaction to be expressed at a ratio of approximately 2:1 in granulosa cells, small, medium, and large antral follicles, and midluteal phase corpora lutea of unprimed animals. Immunoreactive ERβ proteins corresponding to the size of in vitro translated ERβ and ERβδ5 were detected by immunoblot. Full-length ERβ was detected in granulosa, small, medium, and large antral follicles, and midluteal phase CL of unprimed animals. Putative ERβδ5 immunoreactive bands were abundant only in granulosa cell extracts. In COS-1 cells, transfected ERβδ5 had no effect on basal transcription of an estrogen-responsive reporter construct but did repress wild-type ERβ transactivation when cotransfected at 10-fold excess plasmid. No repression of ERα transactivation was observed. In primary granulosa cell cultures, transfected ERβδ5 plasmid did not inhibit basal reporter activation. ERβδ5 was shown by immunofluorescence to localize to the nucleus in transfected COS-1 cells. In vitro translated ERβδ5 proteins bound estrogen response elements in DNA in electrophoretic mobility shift assays, as indicated by supershift analysis. ERβ is abundant in porcine ovary, and a naturally occurring splice variant missing exon 5 may have biological function.

Collaboration


Dive into the Holly A. LaVoie's collaboration.

Top Co-Authors

Avatar

Yvonne Y. Hui

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Ambrish Kumar

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Donald J. DiPette

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Ugra S. Singh

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard J. Kordus

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Chandra K. Singh

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicole E. Whitfield

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Steven R. King

Texas Tech University Health Sciences Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge