Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven R. King is active.

Publication


Featured researches published by Steven R. King.


Journal of Biological Chemistry | 1997

Phosphorylation of Steroidogenic Acute Regulatory Protein (StAR) Modulates Its Steroidogenic Activity

Futoshi Arakane; Steven R. King; Yang Du; Caleb B. Kallen; Lance P. Walsh; Hidemichi Watari; Douglas M. Stocco; Jerome F. Strauss

Steroidogenic acute regulatory protein (StAR) plays a critical role in steroid hormone synthesis. StAR is thought to increase the delivery of cholesterol to the inner mitochondrial membrane where P450scc resides. Tropic hormones acting through the intermediacy of cAMP rapidly increase pregnenolone synthesis, and this rapid steroidogenic response is believed to be due to StAR’s action. The StAR protein contains two consensus sequences for phosphorylation catalyzed by protein kinase A that are conserved across all species in which the amino acid sequence of the StAR protein has been determined. We demonstrated that human StAR expressed in COS-1 cells exists in at least four species detectable by two-dimensional gel electrophoresis followed by Western blotting. The two more acidic species disappeared after treatment of the cell extracts with alkaline phosphatase.32P was incorporated into StAR protein immunoprecipitated from COS-1 cell extracts, and a 10-min treatment with 8-bromo-cAMP increased 32P incorporation into the StAR preprotein. StAR protein generated by in vitrotranscription/translation was phosphorylated by the protein kinase A catalytic subunit in the presence of [γ-32P]ATP. Mutation of potential sites for protein kinase A-mediated phosphorylation at serine 57 and serine 195 to alanines, individually, reduced 32P incorporation from labeled ATP into StAR preprotein produced by in vitro transcription/translation when incubated with protein kinase A catalytic subunit. 32P labeling of StAR protein expressed in COS-1 cells was also reduced when serine 57 or serine 195 were mutated to alanines. A double mutant in which both serine 57 and serine 195 were changed to alanines displayed markedly reduced 32P incorporation. To determine the functional significance of StAR phosphorylation, we tested the steroidogenic activity of the wild-type StAR and mutated StAR proteins in COS-1 cells expressing the human cholesterol side chain cleavage enzyme system. Mutation of the conserved protein kinase A phosphorylation site at serine 57 had no effect on pregnenolone synthesis. However, mutation of the serine residue at 195 resulted in an approximately 50% reduction in pregnenolone production. The S195A mutant construct did not yield the more acidic species of StAR detected in two-dimensional Western blots, indicating that the mutation affected the ability of the protein to be post-translationally modified. Mutation of the corresponding serine residues in murine StAR (Ser56 and Ser194) to alanines yielded results that were similar to those obtained with human StAR; the S56A mutant displayed a modest reduction in steroidogenic activity, whereas the S194A mutant had approximately 40% of the activity of murine wild-type StAR. In contrast to the human S195A mutation, conversion of serine 195 to an aspartic acid residue had no effect on steroidogenic activity, consistent with the idea that a negative charge at this site modulates StAR function. Our observations suggest that phosphorylation of serine 194/195 increases the biological activity of StAR and that this post- or co-translational event accounts, in part, for the immediate effects of cAMP on steroid production.


Experimental Biology and Medicine | 2009

Transcriptional Regulation of Steroidogenic Genes: STARD1, CYP11A1 and HSD3B

Holly A. LaVoie; Steven R. King

Expression of the genes that mediate the first steps in steroidogenesis, the steroidogenic acute regulatory protein (STARD1), the cholesterol side-chain cleavage enzyme, cytochrome P450scc (CYP11A1) and 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (HSD3B), is tightly controlled by a battery of transcription factors in the adrenal cortex, the gonads and the placenta. These genes generally respond to the same hormones that stimulate steroid production through common pathways such as cAMP signaling and common actions on their promoters by proteins such as NR5A and GATA family members. However, there are distinct temporal, tissue and species-specific differences in expression between the genes that are defined by combinatorial regulation and unique promoter elements. This review will provide an overview of the hormonal and transcriptional regulation of the STARD1, CYP11A1 and specific steroidogenic HSD3B genes in the adrenal, testis, ovary and placenta and discuss the current knowledge regarding the key transcriptional factors involved.


The Journal of Steroid Biochemistry and Molecular Biology | 1999

Effects of disruption of the mitochondrial electrochemical gradient on steroidogenesis and the Steroidogenic Acute Regulatory (StAR) proteinProceedings of Xth International Congress on Hormonal Steroids, Quebec, Canada, 17–21 June 1998.

Steven R. King; Zhiming Liu; Jaemog Soh; Sarah Eimerl; Joseph Orly; Douglas M. Stocco

The steroidogenic acute regulatory (StAR) protein, which mediates cholesterol delivery to the inner mitochondrial membrane and the P450scc enzyme, has been shown to require a mitochondrial electrochemical gradient for its activity in vitro. To characterize the role of this gradient in cholesterol transfer, investigations were conducted in whole cells, utilizing the protonophore carbonyl cyanide m-chlorophenylhydrazone (m-CCCP) and the potassium ionophore valinomycin. These reagents, respectively, dissipate the mitochondrial electrochemical gradient and inner mitochondrial membrane potential. Both MA-10 Leydig tumor cell steroidogenesis and mitochondrial import of StAR were inhibited by m-CCCP or valinomycin at concentrations which had only minimal effects on P450scc activity. m-CCCP also inhibited import and processing of both StAR and the truncated StAR mutants, N-19 and C-28, in transfected COS-1 cells. Steroidogenesis induced by StAR and N-47, an active N-terminally truncated StAR mutant, was reduced in transfected COS-1 cells when treated with m-CCCP. This study shows that StAR action requires a membrane potential, which may reflect a functional requirement for import of StAR into the mitochondria, or more likely, an unidentified factor which is sensitive to ionophore treatment. Furthermore, the ability of N-47 to stimulate steroidogenesis in nonsteroidogenic HepG2 liver tumor cells, suggests that the mechanism by which StAR acts may be common to many cell types.


Endocrine Research | 1996

ATP and A mitochondrial electrochemical gradient are required for functional activity of the steroidogenic acute regulatory (star) protein in isolated mitochondria

Steven R. King; Douglas M. Stocco

The Steroidogenic Acute Regulatory (StAR) protein has been put forth as the rapidly synthesized, cycloheximide-sensitive protein that is required for the transport of cholesterol to the inner mitochondrial membrane and the P450scc enzyme and thereby acutely regulates steroidogenesis in steroidogenic tissues. In this study, several of the factors that may be required for StAR activity were examined using an in vitro system. Lysates from StAR-transfected COS-1 cells were added to mitochondria isolated from MA-10 Leydig tumor cells. Results obtained demonstrated that StAR-containing cell lysate increased steroidogenesis in isolated mitochondria, but failed to do so in the presence of m-CCCP, apyrase, or AMP-PNP, suggesting that StAR function requires ATP hydrolysis as well as an electrochemical gradient for maximal steroidogenic activity.


Endocrine development | 2011

Functional and Physiological Consequences of StAR Deficiency: Role in Lipoid Congenital Adrenal Hyperplasia

Steven R. King; Amrit Bhangoo; Douglas M. Stocco

The steroidogenic acute regulatory (StAR) protein is essential for all hormone-stimulated steroid biosynthesis. Accordingly, its absence gives rise to the most severe form of congenital adrenal hyperplasia (CAH), lipoid CAH. This life-threatening condition typically manifests itself in the perinatal period. Partial loss-of-function StAR mutations incompletely manifest the condition later in life and are a cause of familial glucocorticoid deficiency type 3. Here, we discuss StAR, its expression pattern and the clinical consequences of the loss of its activity.


Endocrinology | 2014

Synergistic activation of steroidogenic acute regulatory protein expression and steroid biosynthesis by retinoids: involvement of cAMP/PKA signaling.

Pulak R. Manna; Andrzej Slominski; Steven R. King; Cloyce L. Stetson; Douglas M. Stocco

Both retinoic acid receptors (RARs) and retinoid X receptors (RXRs) mediate the action of retinoids that play important roles in reproductive development and function, as well as steroidogenesis. Regulation of steroid biosynthesis is principally mediated by the steroidogenic acute regulatory protein (StAR); however, the modes of action of retinoids in the regulation of steroidogenesis remain obscure. In this study we demonstrate that all-trans retinoic acid (atRA) enhances StAR expression, but not its phosphorylation (P-StAR), and progesterone production in MA-10 mouse Leydig cells. Activation of the protein kinase A (PKA) cascade, by dibutyrl-cAMP or type I/II PKA analogs, markedly increased retinoid-responsive StAR, P-StAR, and steroid levels. Targeted silencing of endogenous RARα and RXRα, with small interfering RNAs, resulted in decreases in 9-cis RA-stimulated StAR and progesterone levels. Truncation of and mutational alterations in the 5-flanking region of the StAR gene demonstrated the importance of the -254/-1-bp region in retinoid responsiveness. An oligonucleotide probe encompassing an RXR/liver X receptor recognition motif, located within the -254/-1-bp region, specifically bound MA-10 nuclear proteins and in vitro transcribed/translated RXRα and RARα in EMSAs. Transcription of the StAR gene in response to atRA and dibutyrl-cAMP was influenced by several factors, its up-regulation being dependent on phosphorylation of cAMP response-element binding protein (CREB). Chromatin immunoprecipitation studies revealed the association of phosphorylation of CREB, CREB binding protein, RXRα, and RARα to the StAR promoter. Further studies elucidated that hormone-sensitive lipase plays an important role in atRA-mediated regulation of the steroidogenic response that involves liver X receptor signaling. These findings delineate the molecular events by which retinoids influence cAMP/PKA signaling and provide additional and novel insight into the regulation of StAR expression and steroidogenesis in mouse Leydig cells.


Molecular and Cellular Endocrinology | 2000

Nigericin inhibits accumulation of the steroidogenic acute regulatory protein but not steroidogenesis

Steven R. King; Lance P. Walsh; Douglas M. Stocco

The steroidogenic acute regulatory (StAR) protein mediates the delivery of cholesterol from the outer to the inner mitochondrial membrane, where the cholesterol side chain cleavage complex converts it to pregnenolone. While the mechanism by which this mitochondrial protein acts is poorly understood, one component of the mitochondrial electrochemical gradient, the electrochemical potential (DeltaPsi), appears to be essential. In this study, the importance of the other component, the proton gradient (DeltapH), was examined. Disruption of DeltapH with the electroneutral K(+)/H(+) exchanger, nigericin, had no effect on steroidogenesis in MA-10 mouse Leydig tumor cells at concentrations which significantly reduced StAR protein levels. These data indicate for the first time in true steroidogenic cells, that StAR can act prior to being fully imported into the mitochondria and are consistent with observations made in COS-1 cells using mutant forms of StAR. These results support the hypothesis that a DeltaPsi-dependent factor is required for StAR activity and demonstrate that nigericin is the first compound described, capable of inhibiting StAR accumulation without affecting steroidogenesis.


Experimental Biology and Medicine | 2014

STARD6 is expressed in steroidogenic cells of the ovary and can enhance de novo steroidogenesis.

Holly A. LaVoie; Nicole E. Whitfield; Bo Shi; Steven R. King; Himangshu S. Bose; Yvonne Y. Hui

STARD6 is a member of the StAR-related lipid transfer (START) domain family of proteins whose function thus far remains obscure. While it recently was shown to facilitate steroidogenesis in a cell-free setting, it has not been localized to steroidogenic cells of normal reproductive tissues. In a recent microarray study, we detected STARD6 mRNA in cultured porcine ovarian granulosa cells which are steroidogenic. In the present study, we examined regulation of STARD6 mRNA in porcine granulosa cultures, and found that it was not regulated by cyclic AMP, but it was reduced by combined knockdown of the transcription factors GATA4 and GATA6. We detected both STARD6 mRNA and protein in fresh granulosa cells and whole antral follicles and different stage corpora lutea of pig. The highest levels were discovered in the mid-luteal phase corpus luteum. Immunolocalization within ovarian tissues indicated robust STARD6 immunoreactivity in steroidogenic cells of the corpus luteum. Relatively lesser amounts of STARD6 signal were found in granulosa cells, theca cells, and oocytes. To test the ability of STARD6 to facilitate de novo steroidogenesis, non-steroidogenic COS-1 cells were co-transfected with components of the P450 cholesterol side-chain cleavage system, enabling them to make pregnenolone, and STARD6. STARD6 increased pregnenolone production by two- to three-fold over the empty vector control. In summary, STARD6 is found in the pig ovary, exhibits the strongest expression in highly steroidogenic luteal cells, and significantly enhances pregnenolone production in transfected COS cells independent of cyclic AMP treatment. Collectively, these findings indicate that STARD6 may contribute to steroidogenesis in ovarian cells, but also suggests other cellular functions that require cholesterol trafficking.


Frontiers in Endocrinology | 2011

Steroidogenic Acute Regulatory Protein Expression in the Central Nervous System

Steven R. King; Douglas M. Stocco

Locally produced neurosteroids are proposed to have many functions in the central nervous system. The identification of the steroidogenic acute regulatory protein in steroid-producing neural cells provides a new tool to understand the sites, regulation, and importance of their synthesis.


Endocrine Research | 1998

ETHANE DIMETHANE SULFONATE AND NNN'N'-TETRAKIS-(2-PYRIDYLMETHYL)ETHYLENEDIAMINE INHIBIT STEROIDOGENIC ACUTE REGULATORY (STAR) PROTEIN EXPRESSION IN MA -10 LEYDIG CELLS AND RAT SERTOLI CELLS

Steven R. King; F. F. G. Rommerts; Sarah L. Ford; James C. Hutson; Joseph Orly; Douglas M. Stocco

Apoptosis inhibits steroid biosynthesis, but it is not clear how the Steroidogenic Acute Regulatory (StAR) protein, is affected. To characterize StAR expression during apoptosis, mouse MA-10 Leydig tumor cells were treated with ethane dimethane sulfonate (EDS), an inducer of apoptosis, and the metal ion chelator NNNN-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN), an inducer of cell death. Both chemicals induced cell death and similarly inhibited dbcAMP-stimulated steroidogenesis and accumulation of the 30 kDa form of StAR. Utilizing the dye JC-1, it was found that TPEN and EDS also impaired the mitochondrial electrochemical potential (delta psi). In Sertoli cells, which also express StAR, EDS induced cell death and attenuated StAR expression. We conclude 1) steroidogenesis and accumulation of mature StAR protein are inhibited as a consequence of the induction of apoptosis; 2) reduced levels of StAR may be partially attributed to inhibition of import because of the loss of delta psi; 3) loss of steroidogenesis is probably due to loss of StAR synthesis and disruption of delta psi.

Collaboration


Dive into the Steven R. King's collaboration.

Top Co-Authors

Avatar

Douglas M. Stocco

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Joseph Orly

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Barbara J. Clark

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Holly A. LaVoie

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Lance P. Walsh

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

F. F. G. Rommerts

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Amrit Bhangoo

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Andrzej Slominski

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Bo Shi

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge