Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Holly M. Dunsworth is active.

Publication


Featured researches published by Holly M. Dunsworth.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Metabolic hypothesis for human altriciality

Holly M. Dunsworth; Anna G. Warrener; Terrence W. Deacon; Peter T. Ellison; Herman Pontzer

The classic anthropological hypothesis known as the “obstetrical dilemma” is a well-known explanation for human altriciality, a condition that has significant implications for human social and behavioral evolution. The hypothesis holds that antagonistic selection for a large neonatal brain and a narrow, bipedal-adapted birth canal poses a problem for childbirth; the hominin “solution” is to truncate gestation, resulting in an altricial neonate. This explanation for human altriciality based on pelvic constraints persists despite data linking human life history to that of other species. Here, we present evidence that challenges the importance of pelvic morphology and mechanics in the evolution of human gestation and altriciality. Instead, our analyses suggest that limits to maternal metabolism are the primary constraints on human gestation length and fetal growth. Although pelvic remodeling and encephalization during hominin evolution contributed to the present parturitional difficulty, there is little evidence that pelvic constraints have altered the timing of birth.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Primate energy expenditure and life history

Herman Pontzer; David A. Raichlen; Adam D. Gordon; Kara Schroepfer-Walker; Brian Hare; Kathleen M. Muldoon; Holly M. Dunsworth; Brian M. Wood; Karin Isler; Judith M. Burkart; Mitchell T. Irwin; Robert W. Shumaker; Elizabeth V. Lonsdorf; Stephen R. Ross

Significance Measurements of daily energy expenditure indicate that primates, including humans, expend only half of the calories expected for mammals of similar body size. As energy expenditure is central to organismal biology, these results hold important implications for life history, evolutionary biology, and foraging ecology for primates and other mammals. Specifically, we show that primates’ remarkably low metabolic rates account for their distinctively slow rates of growth, reproduction, and aging. Humans and other primates are distinct among placental mammals in having exceptionally slow rates of growth, reproduction, and aging. Primates’ slow life history schedules are generally thought to reflect an evolved strategy of allocating energy away from growth and reproduction and toward somatic investment, particularly to the development and maintenance of large brains. Here we examine an alternative explanation: that primates’ slow life histories reflect low total energy expenditure (TEE) (kilocalories per day) relative to other placental mammals. We compared doubly labeled water measurements of TEE among 17 primate species with similar measures for other placental mammals. We found that primates use remarkably little energy each day, expending on average only 50% of the energy expected for a placental mammal of similar mass. Such large differences in TEE are not easily explained by differences in physical activity, and instead appear to reflect systemic metabolic adaptation for low energy expenditures in primates. Indeed, comparisons of wild and captive primate populations indicate similar levels of energy expenditure. Broad interspecific comparisons of growth, reproduction, and maximum life span indicate that primates’ slow metabolic rates contribute to their characteristically slow life histories.


Nature | 2016

Metabolic acceleration and the evolution of human brain size and life history

Herman Pontzer; Mary H. Brown; David A. Raichlen; Holly M. Dunsworth; Brian Hare; Kara K. Walker; Amy Luke; Lara R. Dugas; Ramon Durazo-Arvizu; Dale A. Schoeller; Jacob Plange-Rhule; Pascal Bovet; Terrence Forrester; Estelle V. Lambert; Melissa Emery Thompson; Robert W. Shumaker; Stephen R. Ross

Humans are distinguished from the other living apes in having larger brains and an unusual life history that combines high reproductive output with slow childhood growth and exceptional longevity. This suite of derived traits suggests major changes in energy expenditure and allocation in the human lineage, but direct measures of human and ape metabolism are needed to compare evolved energy strategies among hominoids. Here we used doubly labelled water measurements of total energy expenditure (TEE; kcal day−1) in humans, chimpanzees, bonobos, gorillas and orangutans to test the hypothesis that the human lineage has experienced an acceleration in metabolic rate, providing energy for larger brains and faster reproduction without sacrificing maintenance and longevity. In multivariate regressions including body size and physical activity, human TEE exceeded that of chimpanzees and bonobos, gorillas and orangutans by approximately 400, 635 and 820 kcal day−1, respectively, readily accommodating the cost of humans’ greater brain size and reproductive output. Much of the increase in TEE is attributable to humans’ greater basal metabolic rate (kcal day−1), indicating increased organ metabolic activity. Humans also had the greatest body fat percentage. An increased metabolic rate, along with changes in energy allocation, was crucial in the evolution of human brain size and life history.


Journal of Human Evolution | 2009

Stratigraphic interpretation of the Kulu Formation (Early Miocene, Rusinga Island, Kenya) and its implications for primate evolution.

Daniel J. Peppe; Kieran P. McNulty; Susanne Cote; William E. H. Harcourt-Smith; Holly M. Dunsworth; John A. Van Couvering

Early Miocene fossils from Rusinga Island, Kenya, provide some of the best evidence for catarrhine evolution and diversification, and, together with more than eighty-five other mammalian species, form an important comparative reference for understanding faunal succession in East Africa. While there is consensus over the stratigraphic position of most of Rusingas volcaniclastic deposits, the lacustrine Kulu Formation has been placed in various parts of the geological sequence by different researchers. To resolve this discrepancy, we conducted detailed geological analyses which indicate that the Kulu Formation was formed in the Early Miocene during a period of volcanic inactivity and subsidence following the early, mainly explosive hyper-alkaline phase of the Kisingiri complex and prior to the final eruptions of nephelinitic lavas. The underlying Hiwegi and older formations were locally deformed and deeply eroded before sedimentation began in the Kulu basin, so that the Kulu sediments may be significantly younger than the 17.8 Ma Hiwegi Formation and not much older than the overlying Kiangata Agglomerata-Lunene Lava series, loosely dated to ca. 15 Ma. The overall similarities between Kulu and Hiwegi faunas imply long-term ecological stability in this region. Our stratigraphic interpretation suggests that the Kulu fauna is contemporaneous with faunas from West Turkana, implying that differences between these assemblages-particularly in the primate communities--reflect paleobiogeographic and/or paleocological differences. Finally, the position of the Kulu Formation restricts the time frame during which the substantial faunal turnover seen in the differences between the primate and mammalian communities of Rusinga and Maboko Islands could have occurred.


Nature Communications | 2014

Remnants of an ancient forest provide ecological context for Early Miocene fossil apes.

Lauren A. Michel; Daniel J. Peppe; James A. Lutz; Steven G. Driese; Holly M. Dunsworth; William E. H. Harcourt-Smith; William H. Horner; Thomas Lehmann; Sheila Nightingale; Kieran P. McNulty

The lineage of apes and humans (Hominoidea) evolved and radiated across Afro-Arabia in the early Neogene during a time of global climatic changes and ongoing tectonic processes that formed the East African Rift. These changes probably created highly variable environments and introduced selective pressures influencing the diversification of early apes. However, interpreting the connection between environmental dynamics and adaptive evolution is hampered by difficulties in locating taxa within specific ecological contexts: time-averaged or reworked deposits may not faithfully represent individual palaeohabitats. Here we present multiproxy evidence from Early Miocene deposits on Rusinga Island, Kenya, which directly ties the early ape Proconsul to a widespread, dense, multistoried, closed-canopy tropical seasonal forest set in a warm and relatively wet, local climate. These results underscore the importance of forested environments in the evolution of early apes.


Journal of Vertebrate Paleontology | 2013

New specimens of ‘Crocodylus’ pigotti (Crocodylidae) from Rusinga Island, Kenya, and generic reallocation of the species

Jack L. Conrad; Kirsten E. Jenkins; Thomas Lehmann; Fredrick Kyalo Manthi; Daniel J. Peppe; Sheila Nightingale; Adam Cossette; Holly M. Dunsworth; William E. H. Harcourt-Smith; Kieran P. McNulty

ABSTRACT ‘Crocodylus’ pigotti is a relatively small crocodylid from the Miocene of Rusinga Island in Lake Victoria, Kenya. Known only from one relatively complete skull and limited, fragmentary, referred material, ‘Crocodylus‘ pigotti lacks a detailed description. Moreover, recent analyses have shown ‘Crocodylus’ pigotti to be an osteolaemine crocodylid, more closely related to the extant dwarf crocodiles (Osteolaemus) than to true Crocodylus. Here, we describe numerous new remains of ‘Crocodylus’ pigotti recovered from localities within the Fossil Bed Member of the Hiwegi Formation at Kaswanga Point, Rusinga Island. We recovered parts of several individuals and report on previously unknown parts of the anatomy, provide an updated phylogenetic analysis, and reallocate the species ‘Crocodylus’ pigotti to a new genus, Brochuchus. SUPPLEMENTAL DATA—Supplemental materials are available for this article for free at www.tandfonline.com/UJVP


Evolution: Education and Outreach | 2010

Origin of the Genus Homo

Holly M. Dunsworth

The origin of the genus Homo in Africa signals the beginning of the shift from increasingly bipedal apes to primitive, large-brained, stone tool-making, meat-eaters that traveled far and wide. This early part of the human genus is represented by three species: Homo habilis, Homo rudolfensis, and Homo erectus. H. habilis is known for retaining primitive features that link it to australopiths and for being the first stone tool makers. Little is known about H. rudolfensis except that it had a relatively large brain and large teeth compared to H. habilis and that it overlapped in time and space with other early Homo. Our understanding of the paleobiology and evolution of the larger-brained H. erectus is enhanced due to its rich fossil record. H. erectus was the first obligate, fully committed biped, and with a body adapted for modern striding locomotion, it was also the first in the human lineage to disperse outside of Africa. The early members of the genus Homo are the first to tip the scale from the more apish side of our evolutionary history toward the more human one.


Journal of Human Evolution | 2015

Dental microwear profilometry of African non-cercopithecoid catarrhines of the Early Miocene

Brian M. Shearer; Peter S. Ungar; Kieran P. McNulty; William E. H. Harcourt-Smith; Holly M. Dunsworth; Mark F. Teaford

The Early Miocene of Kenya has yielded the remains of many important stem catarrhine species that provide a glimpse of the East African primate radiation at a time of major faunal turnover. These taxa have been subject to innumerable studies, yet there is still no consensus on their dietary niches. Here we report results of an analysis of dental microwear textures of non-cercopithecoid catarrhines from the Early Miocene of Kenya. Scanning confocal profilometry of all available molar specimens with undamaged occlusal surfaces revealed 82 individuals with unobscured antemortem microwear, representing Dendropithecus, Micropithecus, Limnopithecus, Proconsul, and Rangwapithecus. Scale-sensitive fractal analysis was used to generate microwear texture attributes for each individual, and the fossil taxa were compared with each other using conservative non-parametric statistical tests. This study revealed no discernible variation in microwear texture among the fossil taxa, which is consistent with results from a previous feature-based microwear study using smaller samples. Our results suggest that, despite their morphological differences, these taxa likely often consumed foods with similar abrasive and fracture properties. However, statistical analyses of microwear texture data indicate differences between the Miocene fossil sample and several extant anthropoid primate genera. This suggests that the African non-cercopithecoid catarrhines included in our study, despite variations in tooth form, had generalist diets that were not yet specialized to the degree of many modern taxa.


Journal of Anatomy | 2018

Ontogeny of hallucal metatarsal rigidity and shape in the rhesus monkey (Macaca mulatta) and chimpanzee (Pan troglodytes)

Biren A. Patel; Jason M. Organ; Tea Jashashvili; Stephanie H. Bui; Holly M. Dunsworth

Life history variables including the timing of locomotor independence, along with changes in preferred locomotor behaviors and substrate use during development, influence how primates use their feet throughout ontogeny. Changes in foot function during development, in particular the nature of how the hallux is used in grasping, can lead to different structural changes in foot bones. To test this hypothesis, metatarsal midshaft rigidity [estimated from the polar second moment of area (J) scaled to bone length] and cross‐sectional shape (calculated from the ratio of maximum and minimum second moments of area, Imax/Imin) were examined in a cross‐sectional ontogenetic sample of rhesus macaques (Macaca mulatta; n = 73) and common chimpanzees (Pan troglodytes; n = 79). Results show the hallucal metatarsal (Mt1) is relatively more rigid (with higher scaled J‐values) in younger chimpanzees and macaques, with significant decreases in relative rigidity in both taxa until the age of achieving locomotor independence. Within each age group, Mt1 rigidity is always significantly higher in chimpanzees than macaques. When compared with the lateral metatarsals (Mt2–5), the Mt1 is relatively more rigid in both taxa and across all ages; however, this difference is significantly greater in chimpanzees. Length and J scale with negative allometry in all metatarsals and in both species (except the Mt2 of chimpanzees, which scales with positive allometry). Only in macaques does Mt1 midshaft shape significantly change across ontogeny, with older individuals having more elliptical cross‐sections. Different patterns of development in metatarsal diaphyseal rigidity and shape likely reflect the different ways in which the foot, and in particular the hallux, functions across ontogeny in apes and monkeys.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Thank your intelligent mother for your big brain

Holly M. Dunsworth

Inventors, artists, and scientists are the usual suspects for symbolizing and celebrating the brainy human primate. However, what if babies, mothers, and other caregivers were the real stars in the story of human intelligence? That possibility is one implication of a recent study in PNAS from Piantadosi and Kidd (1).

Collaboration


Dive into the Holly M. Dunsworth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

William E. H. Harcourt-Smith

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge