Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hong Ming Huang is active.

Publication


Featured researches published by Hong Ming Huang.


Scientific Reports | 2016

A novel ENU-induced ankyrin-1 mutation impairs parasite invasion and increases erythrocyte clearance during malaria infection in mice

Hong Ming Huang; Denis C. Bauer; Patrick M. Lelliott; Andreas Greth; Brendan J. McMorran; Simon J. Foote; Gaetan Burgio

Genetic defects in various red blood cell (RBC) cytoskeletal proteins have been long associated with changes in susceptibility towards malaria infection. In particular, while ankyrin (Ank-1) mutations account for approximately 50% of hereditary spherocytosis (HS) cases, an association with malaria is not well-established, and conflicting evidence has been reported. We describe a novel N-ethyl-N-nitrosourea (ENU)-induced ankyrin mutation MRI61689 that gives rise to two different ankyrin transcripts: one with an introduced splice acceptor site resulting a frameshift, the other with a skipped exon. Ank-1(MRI61689/+) mice exhibit an HS-like phenotype including reduction in mean corpuscular volume (MCV), increased osmotic fragility and reduced RBC deformability. They were also found to be resistant to rodent malaria Plasmodium chabaudi infection. Parasites in Ank-1(MRI61689/+) erythrocytes grew normally, but red cells showed resistance to merozoite invasion. Uninfected Ank-1(MRI61689/+) erythrocytes were also more likely to be cleared from circulation during infection; the “bystander effect”. This increased clearance is a novel resistance mechanism which was not observed in previous ankyrin mouse models. We propose that this bystander effect is due to reduced deformability of Ank-1(MRI61689/+) erythrocytes. This paper highlights the complex roles ankyrin plays in mediating malaria resistance.


Science | 2012

Platelet Factor 4 and Duffy Antigen Required for Platelet Killing of Plasmodium falciparum

Brendan J. McMorran; Laura Wieczorski; Karen E. Drysdale; Jo-Anne Chan; Hong Ming Huang; Clare M. Smith; Chalachew Mitiku; James G. Beeson; Gaetan Burgio; Simon J. Foote

Platelets Poison Parasites Activated platelets bound to malaria parasite–infected red blood cells were once thought to contribute to pathogenesis, but recently the platelets have been found to have a protective effect. McMorran et al. (p. 1348; see the Perspective by Engwerda and Good) extended this discovery to show that platelet activation releases intracellular granules containing a chemokine, PF4, which is internalized by Plasmodium falciparum–infected red cells. Subsequently, mature parasites within the cells die. The Duffy blood-group factor on red blood cells is known to act as a nonspecific receptor for chemokines, such as PF4, as well as a receptor for cell invasion by other species of malaria parasite. When the Duffy antigen was blocked by antibody treatment, platelets and PF4 were less able to kill the P. falciparum parasites within. Interaction of a platelet protein and a red cell protein enables platelets to attack malarial parasites inside red cells. Platelets restrict the growth of intraerythrocytic malaria parasites by binding to parasitized cells and killing the parasite within. Here, we show that the platelet molecule platelet factor 4 (PF4 or CXCL4) and the erythrocyte Duffy-antigen receptor (Fy) are necessary for platelet-mediated killing of Plasmodium falciparum parasites. PF4 is released by platelets on contact with parasitized red cells, and the protein directly kills intraerythrocytic parasites. This function for PF4 is critically dependent on Fy, which binds PF4. Genetic disruption of Fy expression inhibits binding of PF4 to parasitized cells and concomitantly prevents parasite killing by both human platelets and recombinant human PF4. The protective function afforded by platelets during a malarial infection may therefore be compromised in Duffy-negative individuals, who do not express Fy.


PLOS ONE | 2014

Treatment of Erythrocytes with the 2-Cys Peroxiredoxin Inhibitor, Conoidin A, Prevents the Growth of Plasmodium falciparum and Enhances Parasite Sensitivity to Chloroquine

Mariana Brizuela; Hong Ming Huang; Clare M. Smith; Gaetan Burgio; Simon J. Foote; Brendan J. McMorran

The human erythrocyte contains an abundance of the thiol-dependant peroxidase Peroxiredoxin-2 (Prx2), which protects the cell from the pro-oxidant environment it encounters during its 120 days of life in the blood stream. In malarial infections, the Plasmodium parasite invades red cells and imports Prx2 during intraerythrocytic development, presumably to supplement in its own degradation of peroxides generated during cell metabolism, especially hemoglobin (Hb) digestion. Here we demonstrate that an irreversible Prx2 inhibitor, Conoidin A (2,3-bis(bromomethyl)-1,4-dioxide-quinoxaline; BBMQ), has potent cytocidal activity against cultured P. falciparum. Parasite growth was also inhibited in red cells that were treated with BBMQ and then washed prior to parasite infection. These cells remained susceptible to merozoite invasion, but failed to support normal intraerythrocytic development. In addition the potency of chloroquine (CQ), an antimalarial drug that prevents the detoxification of Hb-derived heme, was significantly enhanced in the presence of BBMQ. CQ IC50 values decreased an order of magnitude when parasites were either co-incubated with BBMQ, or introduced into BBMQ-pretreated cells; these effects were equivalent for both drug-resistant and drug-sensitive parasite lines. Together these results indicate that treatment of red cells with BBMQ renders them incapable of supporting parasite growth and increases parasite sensitivity to CQ. We also propose that molecules such as BBMQ that target host cell proteins may constitute a novel host-directed therapeutic approach for treating malaria.


G3: Genes, Genomes, Genetics | 2017

Ankyrin-1 Gene Exhibits Allelic Heterogeneity in Conferring Protection Against Malaria

Hong Ming Huang; Denis C. Bauer; Patrick M. Lelliott; Matthew W. A. Dixon; Leann Tilley; Brendan J. McMorran; Simon J. Foote; Gaetan Burgio

Allelic heterogeneity is a common phenomenon where a gene exhibits a different phenotype depending on the nature of its genetic mutations. In the context of genes affecting malaria susceptibility, it allowed us to explore and understand the intricate host–parasite interactions during malaria infections. In this study, we described a gene encoding erythrocytic ankyrin-1 (Ank-1) which exhibits allelic-dependent heterogeneous phenotypes during malaria infections. We conducted an ENU mutagenesis screen on mice and identified two Ank-1 mutations, one resulting in an amino acid substitution (MRI95845), and the other a truncated Ank-1 protein (MRI96570). Both mutations caused hereditary spherocytosis-like phenotypes and confer differing protection against Plasmodium chabaudi infections. Upon further examination, the Ank-1(MRI96570) mutation was found to inhibit intraerythrocytic parasite maturation, whereas Ank-1(MRI95845) caused increased bystander erythrocyte clearance during infection. This is the first description of allelic heterogeneity in ankyrin-1 from the direct comparison between two Ank-1 mutations. Despite the lack of direct evidence from population studies, this data further supported the protective roles of ankyrin-1 mutations in conferring malaria protection. This study also emphasized the importance of such phenomena in achieving a better understanding of host–parasite interactions, which could be the basis of future studies.


Mammalian Genome | 2018

Host genetics in malaria: lessons from mouse studies

Hong Ming Huang; Brendan J. McMorran; Simon J. Foote; Gaetan Burgio

Malaria remains a deadly parasitic disease caused by Plasmodium, claiming almost half a million lives every year. While parasite genetics and biology are often the major targets in many studies, it is becoming more evident that host genetics plays a crucial role in the outcome of the infection. Similarly, Plasmodium infections in mice also rely heavily on the genetic background of the mice, and often correlate with observations in human studies, due to their high genetic homology with humans. As such, murine models of malaria are a useful tool for understanding host responses during Plasmodium infections, as well as dissecting host-parasite interactions through various genetic manipulation techniques. Reverse genetic approach such as quantitative trait loci studies and random mutagenesis screens have been employed to discover novel host genes that affect malaria susceptibility in mouse models, while other targeted studies utilize mouse models to validate observation from human studies. Herein, we review the findings from the past and present studies on murine models of hepatic and erythrocytic stages of malaria and speculate on how the current mouse models benefit from the recent development in CRISPR/Cas9 gene editing technology.


white Brown White Men Trainerendor s Prem Light NIKE Skateboarding gm Gold Flax Flax g7qzwn-mamanetbebes.com | 2017

white Brown White Men Trainerendor s Prem Light NIKE Skateboarding gm Gold Flax Flax g7qzwn-mamanetbebes.com

Patrick M. Lelliott; Hong Ming Huang; Matthew W. Dixon; Arman Namvar; Adam J. Blanch; Vijay Rajagopal; Leann Tilley; Cevayir Coban; Brendan J. McMorran; Simon J. Foote; Gaetan Burgio

The malaria parasite hijacks host erythrocytes to shield itself from the immune system and proliferate. Red blood cell abnormalities can provide protection from malaria by impeding parasite invasion and growth within the cell or by compromising the ability of parasites to avoid host clearance. Here, we describe 2 N-ethyl-N-nitrosourea-induced mouse lines, SptbMRI26194 and SptbMRI53426 , containing single-point mutations in the erythrocyte membrane skeleton gene, β spectrin (Sptb), which exhibit microcytosis but retain a relatively normal ratio of erythrocyte surface area to volume and are highly resistant to rodent malaria. We propose the major factor responsible for malaria protection is the specific clearance of mutant erythrocytes, although an enhanced clearance of uninfected mutant erythrocytes was also observed (ie, the bystander effect). Using an in vivo erythrocyte tracking assay, we established that this phenomenon occurs irrespective of host environment, precluding the involvement of nonerythrocytic cells in the resistance mechanism. Furthermore, we recapitulated this phenotype by disrupting the interaction between ankyrin-1 and β spectrin in vivo using CRISPR/Cas9 genome editing technology, thereby genetically validating a potential antimalarial target. This study sheds new light on the role of β spectrin during Plasmodium infection and highlights how changes in the erythrocyte cytoskeleton can substantially influence malaria susceptibility with minimal adverse consequences for the host.


velvet Mens velvet Air Max NIKE brown Shoes brown 8 Royal 90 Running D M US Pdq55wgOxn-mamanetbebes.com | 2017

velvet Mens velvet Air Max NIKE brown Shoes brown 8 Royal 90 Running D M US Pdq55wgOxn-mamanetbebes.com

Patrick M. Lelliott; Hong Ming Huang; Matthew W. Dixon; Arman Namvar; Adam J. Blanch; Vijay Rajagopal; Leann Tilley; Cevayir Coban; Brendan J. McMorran; Simon J. Foote; Gaetan Burgio

The malaria parasite hijacks host erythrocytes to shield itself from the immune system and proliferate. Red blood cell abnormalities can provide protection from malaria by impeding parasite invasion and growth within the cell or by compromising the ability of parasites to avoid host clearance. Here, we describe 2 N-ethyl-N-nitrosourea-induced mouse lines, SptbMRI26194 and SptbMRI53426 , containing single-point mutations in the erythrocyte membrane skeleton gene, β spectrin (Sptb), which exhibit microcytosis but retain a relatively normal ratio of erythrocyte surface area to volume and are highly resistant to rodent malaria. We propose the major factor responsible for malaria protection is the specific clearance of mutant erythrocytes, although an enhanced clearance of uninfected mutant erythrocytes was also observed (ie, the bystander effect). Using an in vivo erythrocyte tracking assay, we established that this phenomenon occurs irrespective of host environment, precluding the involvement of nonerythrocytic cells in the resistance mechanism. Furthermore, we recapitulated this phenotype by disrupting the interaction between ankyrin-1 and β spectrin in vivo using CRISPR/Cas9 genome editing technology, thereby genetically validating a potential antimalarial target. This study sheds new light on the role of β spectrin during Plasmodium infection and highlights how changes in the erythrocyte cytoskeleton can substantially influence malaria susceptibility with minimal adverse consequences for the host.


s Mercurial Red Black Univ Sg Men Black Shoes Grey Footbal Df White Victory NIKE Dk Vi 5fUwAa-mamanetbebes.com | 2017

s Mercurial Red Black Univ Sg Men Black Shoes Grey Footbal Df White Victory NIKE Dk Vi 5fUwAa-mamanetbebes.com

Patrick M. Lelliott; Hong Ming Huang; Matthew W. Dixon; Arman Namvar; Adam J. Blanch; Vijay Rajagopal; Leann Tilley; Cevayir Coban; Brendan J. McMorran; Simon J. Foote; Gaetan Burgio

The malaria parasite hijacks host erythrocytes to shield itself from the immune system and proliferate. Red blood cell abnormalities can provide protection from malaria by impeding parasite invasion and growth within the cell or by compromising the ability of parasites to avoid host clearance. Here, we describe 2 N-ethyl-N-nitrosourea-induced mouse lines, SptbMRI26194 and SptbMRI53426 , containing single-point mutations in the erythrocyte membrane skeleton gene, β spectrin (Sptb), which exhibit microcytosis but retain a relatively normal ratio of erythrocyte surface area to volume and are highly resistant to rodent malaria. We propose the major factor responsible for malaria protection is the specific clearance of mutant erythrocytes, although an enhanced clearance of uninfected mutant erythrocytes was also observed (ie, the bystander effect). Using an in vivo erythrocyte tracking assay, we established that this phenomenon occurs irrespective of host environment, precluding the involvement of nonerythrocytic cells in the resistance mechanism. Furthermore, we recapitulated this phenotype by disrupting the interaction between ankyrin-1 and β spectrin in vivo using CRISPR/Cas9 genome editing technology, thereby genetically validating a potential antimalarial target. This study sheds new light on the role of β spectrin during Plasmodium infection and highlights how changes in the erythrocyte cytoskeleton can substantially influence malaria susceptibility with minimal adverse consequences for the host.


s Men Sports Downshifter Shoes Blanc 6 NIKE tqA6ZnUPw-mamanetbebes.com | 2017

s Men Sports Downshifter Shoes Blanc 6 NIKE tqA6ZnUPw-mamanetbebes.com

Patrick M. Lelliott; Hong Ming Huang; Matthew W. Dixon; Arman Namvar; Adam J. Blanch; Vijay Rajagopal; Leann Tilley; Cevayir Coban; Brendan J. McMorran; Simon J. Foote; Gaetan Burgio

The malaria parasite hijacks host erythrocytes to shield itself from the immune system and proliferate. Red blood cell abnormalities can provide protection from malaria by impeding parasite invasion and growth within the cell or by compromising the ability of parasites to avoid host clearance. Here, we describe 2 N-ethyl-N-nitrosourea-induced mouse lines, SptbMRI26194 and SptbMRI53426 , containing single-point mutations in the erythrocyte membrane skeleton gene, β spectrin (Sptb), which exhibit microcytosis but retain a relatively normal ratio of erythrocyte surface area to volume and are highly resistant to rodent malaria. We propose the major factor responsible for malaria protection is the specific clearance of mutant erythrocytes, although an enhanced clearance of uninfected mutant erythrocytes was also observed (ie, the bystander effect). Using an in vivo erythrocyte tracking assay, we established that this phenomenon occurs irrespective of host environment, precluding the involvement of nonerythrocytic cells in the resistance mechanism. Furthermore, we recapitulated this phenotype by disrupting the interaction between ankyrin-1 and β spectrin in vivo using CRISPR/Cas9 genome editing technology, thereby genetically validating a potential antimalarial target. This study sheds new light on the role of β spectrin during Plasmodium infection and highlights how changes in the erythrocyte cytoskeleton can substantially influence malaria susceptibility with minimal adverse consequences for the host.


s Men Gymnastics White 111 White White NIKE White 3 Retro Air Jordan Shoes Y5xdnq1ABd-mamanetbebes.com | 2017

s Men Gymnastics White 111 White White NIKE White 3 Retro Air Jordan Shoes Y5xdnq1ABd-mamanetbebes.com

Patrick M. Lelliott; Hong Ming Huang; Matthew W. Dixon; Arman Namvar; Adam J. Blanch; Vijay Rajagopal; Leann Tilley; Cevayir Coban; Brendan J. McMorran; Simon J. Foote; Gaetan Burgio

The malaria parasite hijacks host erythrocytes to shield itself from the immune system and proliferate. Red blood cell abnormalities can provide protection from malaria by impeding parasite invasion and growth within the cell or by compromising the ability of parasites to avoid host clearance. Here, we describe 2 N-ethyl-N-nitrosourea-induced mouse lines, SptbMRI26194 and SptbMRI53426 , containing single-point mutations in the erythrocyte membrane skeleton gene, β spectrin (Sptb), which exhibit microcytosis but retain a relatively normal ratio of erythrocyte surface area to volume and are highly resistant to rodent malaria. We propose the major factor responsible for malaria protection is the specific clearance of mutant erythrocytes, although an enhanced clearance of uninfected mutant erythrocytes was also observed (ie, the bystander effect). Using an in vivo erythrocyte tracking assay, we established that this phenomenon occurs irrespective of host environment, precluding the involvement of nonerythrocytic cells in the resistance mechanism. Furthermore, we recapitulated this phenotype by disrupting the interaction between ankyrin-1 and β spectrin in vivo using CRISPR/Cas9 genome editing technology, thereby genetically validating a potential antimalarial target. This study sheds new light on the role of β spectrin during Plasmodium infection and highlights how changes in the erythrocyte cytoskeleton can substantially influence malaria susceptibility with minimal adverse consequences for the host.

Collaboration


Dive into the Hong Ming Huang's collaboration.

Top Co-Authors

Avatar

Brendan J. McMorran

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Gaetan Burgio

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Simon J. Foote

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Patrick M. Lelliott

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arman Namvar

Biotechnology Institute

View shared research outputs
Top Co-Authors

Avatar

Leann Tilley

Biotechnology Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge