Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon J. Foote is active.

Publication


Featured researches published by Simon J. Foote.


Science | 1995

An STS-Based Map of the Human Genome

Thomas J. Hudson; Lincoln D. Stein; Sebastian S. Gerety; Junli Ma; Andrew B. Castle; James Silva; Donna K. Slonim; Rafael Baptista; Shu-Hua Xu; Xintong Hu; Angela M. E. Colbert; Carl Rosenberg; Mary Pat Reeve-Daly; Steve Rozen; Lester Hui; Xiaoyun Wu; Christina Vestergaard; Kimberly M. Wilson; Jane S. Bae; Shanak Maitra; Soula Ganiatsas; Cheryl A. Evans; Margaret M. DeAngelis; Kimberly A. Ingalls; Robert Nahf; Lloyd T. Horton; Michele Oskin Anderson; Alville Collymore; Wenjuan Ye; Vardouhie Kouyoumjian

A physical map has been constructed of the human genome containing 15,086 sequence-tagged sites (STSs), with an average spacing of 199 kilobases. The project involved assembly of a radiation hybrid map of the human genome containing 6193 loci and incorporated a genetic linkage map of the human genome containing 5264 loci. This information was combined with the results of STS-content screening of 10,850 loci against a yeast artificial chromosome library to produce an integrated map, anchored by the radiation hybrid and genetic maps. The map provides radiation hybrid coverage of 99 percent and physical coverage of 94 percent of the human genome. The map also represents an early step in an international project to generate a transcript map of the human genome, with more than 3235 expressed sequences localized. The STSs in the map provide a scaffold for initiating large-scale sequencing of the human genome.


Cell | 1989

Amplification of the multidrug resistance gene in some chloroquine-resistant isolates of P. falciparum

Simon J. Foote; Jennifer K. Thompson; Alan F. Cowman; David J. Kemp

Resistance of Plasmodium falciparum to chloroquine shares features with the multidrug resistance (MDR) phenotype of mammalian tumor cells. We report here the sequence of pfmdr, the P. falciparum homolog of mdr. We show that pfmdr is amplified in some chloroquine-resistant parasites but not in any of the sensitive isolates examined and that pfmdr transcript levels are increased. The gene is located on chromosome 5, and in one chloroquine-resistant line with an amplified pfmdr gene, chromosome 5 is greatly enlarged. The chromosome heterogeneity is due to varying copy numbers of different-sized pfmdr-containing amplicons. The existence of an mdr gene in P. falciparum and its amplification in some chloroquine-resistant lines greatly adds to the circumstantial evidence that pfmdr mediates chloroquine resistance in these lines.


Blood | 2009

Novel roles for erythroid Ankyrin-1 revealed through an ENU-induced null mouse mutant

Gerhard Rank; Rosemary Sutton; Vikki M. Marshall; Rachel J. Lundie; Jacinta Caddy; Tony Romeo; Kate M. Fernandez; Matthew P. McCormack; Brian M. Cooke; Simon J. Foote; Brendan S. Crabb; David J. Curtis; Douglas J. Hilton; Benjamin T. Kile; Stephen M. Jane

Insights into the role of ankyrin-1 (ANK-1) in the formation and stabilization of the red cell cytoskeleton have come from studies on the nb/nb mice, which carry hypomorphic alleles of Ank-1. Here, we revise several paradigms established in the nb/nb mice through analysis of an N-ethyl-N-nitrosourea (ENU)-induced Ank-1-null mouse. Mice homozygous for the Ank-1 mutation are profoundly anemic in utero and most die perinatally, indicating that Ank-1 plays a nonredundant role in erythroid development. The surviving pups exhibit features of severe hereditary spherocytosis (HS), with marked hemolysis, jaundice, compensatory extramedullary erythropoiesis, and tissue iron overload. Red cell membrane analysis reveals a complete loss of ANK-1 protein and a marked reduction in beta-spectrin. As a consequence, the red cells exhibit total disruption of cytoskeletal architecture and severely altered hemorheologic properties. Heterozygous mutant mice, which have wild-type levels of ANK-1 and spectrin in their RBC membranes and normal red cell survival and ultrastructure, exhibit profound resistance to malaria, which is not due to impaired parasite entry into RBC. These findings provide novel insights into the role of Ank-1, and define an ideal model for the study of HS and malarial resistance.


PLOS ONE | 2012

A Novel ENU-mutation in Ankyrin-1 disrupts malaria parasite maturation in red blood cells of mice

Andreas Greth; Shelley Lampkin; Preethi Mayura-Guru; Fleur Rodda; Karen E. Drysdale; Meredith Roberts-Thomson; Brendan J. McMorran; Simon J. Foote; Gaetan Burgio

The blood stage of the plasmodium parasite life cycle is responsible for the clinical symptoms of malaria. Epidemiological studies have identified coincidental malarial endemicity and multiple red blood cell (RBC) disorders. Many RBC disorders result from mutations in genes encoding cytoskeletal proteins and these are associated with increased protection against malarial infections. However the mechanisms underpinning these genetic, host responses remain obscure. We have performed an N-ethyl-N-nitrosourea (ENU) mutagenesis screen and have identified a novel dominant (haploinsufficient) mutation in the Ank-1 gene (Ank1MRI23420) of mice displaying hereditary spherocytosis (HS). Female mice, heterozygous for the Ank-1 mutation showed increased survival to infection by Plasmodium chabaudi adami DS with a concomitant 30% decrease in parasitemia compared to wild-type, isogenic mice (wt). A comparative in vivo red cell invasion and parasite growth assay showed a RBC-autonomous effect characterised by decreased proportion of infected heterozygous RBCs. Within approximately 6–8 hours post-invasion, TUNEL staining of intraerythrocytic parasites, showed a significant increase in dead parasites in heterozygotes. This was especially notable at the ring and trophozoite stages in the blood of infected heterozygous mutant mice compared to wt (p<0.05). We conclude that increased malaria resistance due to ankyrin-1 deficiency is caused by the intraerythrocytic death of P. chabaudi parasites.


Malaria Journal | 2014

A flow cytometric assay to quantify invasion of red blood cells by rodent Plasmodium parasites in vivo

Patrick M. Lelliott; Shelley Lampkin; Brendan J. McMorran; Simon J. Foote; Gaetan Burgio

BackgroundMalaria treatments are becoming less effective due to the rapid spread of drug resistant parasites. Increased understanding of the host/parasite interaction is crucial in order to develop treatments that will be less prone to resistance. Parasite invasion of the red blood cell (RBC) is a critical aspect of the parasite life cycle and is, therefore, a promising target for the development of malaria treatments. Assays for analysing parasite invasion in vitro have been developed, but no equivalent assays exist for in vivo studies. This article describes a novel flow cytometric in vivo parasite invasion assay.MethodsExperiments were conducted with mice infected with erythrocytic stages of Plasmodium chabaudi adami strain DS. Exogenously labelled blood cells were transfused into infected mice at schizogony, and collected blood samples stained and analysed using flow cytometry to specifically detect and measure proportions of labelled RBC containing newly invaded parasites. A combination of antibodies (CD45 and CD71) and fluorescent dyes, Hoechst (DNA) and JC-1 (mitochondrial membrane potential), were used to differentiate parasitized RBCs from uninfected cells, RBCs containing Howell-Jolly bodies, leukocytes and RBC progenitors. Blood cells were treated ex vivo with proteases to examine the effects on in vivo parasite invasion.ResultsThe staining and flow cytometry analysis method was accurate in determining the parasitaemia down to 0.013% with the limit of detection at 0.007%. Transfused labelled blood supported normal rates of parasite invasion. Protease-treated red cells resulted in 35% decrease in the rate of parasite invasion within 30 minutes of introduction into the bloodstream of infected mice.ConclusionsThe invasion assay presented here is a versatile method for the study of in vivo red cell invasion efficiency of Plasmodium parasites in mice, and allows direct comparison of invasion in red cells derived from two different populations. The method also serves as an accurate alternative method of estimating blood parasitaemia.


Malaria Journal | 2015

The influence of host genetics on erythrocytes and malaria infection: is there therapeutic potential?

Patrick M. Lelliott; Brendan J. McMorran; Simon J. Foote; Gaetan Burgio

As parasites, Plasmodium species depend upon their host for survival. During the blood stage of their life-cycle parasites invade and reside within erythrocytes, commandeering host proteins and resources towards their own ends, and dramatically transforming the host cell. Parasites aptly avoid immune detection by minimizing the exposure of parasite proteins and removing themselves from circulation through cytoadherence. Erythrocytic disorders brought on by host genetic mutations can interfere with one or more of these processes, thereby providing a measure of protection against malaria to the host. This review summarizes recent findings regarding the mechanistic aspects of this protection, as mediated through the parasites interaction with abnormal erythrocytes. These novel findings include the reliance of the parasite on the host enzyme ferrochelatase, and the discovery of basigin and CD55 as obligate erythrocyte receptors for parasite invasion. The elucidation of these naturally occurring malaria resistance mechanisms is increasing the understanding of the host-parasite interaction, and as discussed below, is providing new insights into the development of therapies to prevent this disease.


Journal of Visualized Experiments | 2015

In vivo assessment of rodent Plasmodium parasitemia and merozoite invasion by flow cytometry

Patrick M. Lelliott; Brendan J. McMorran; Simon J. Foote; Gaetan Burgio

During blood stage infection, malaria parasites invade, mature, and replicate within red blood cells (RBCs). This results in a regular growth cycle and an exponential increase in the proportion of malaria infected RBCs, known as parasitemia. We describe a flow cytometry based protocol which utilizes a combination of the DNA dye Hoechst, and the mitochondrial membrane potential dye, JC-1, to identify RBCs which contain parasites and therefore the parasitemia, of in vivo blood samples from Plasmodium chabaudi adami DS infected mice. Using this approach, in combination with fluorescently conjugated antibodies, parasitized RBCs can be distinguished from leukocytes, RBC progenitors, and RBCs containing Howell-Jolly bodies (HJ-RBCs), with a limit of detection of 0.007% parasitemia. Additionally, we outline a method for the comparative assessment of merozoite invasion into two different RBC populations. In this assay RBCs, labeled with two distinct compounds identifiable by flow cytometry, are transfused into infected mice. The relative rate of invasion into the two populations can then be assessed by flow cytometry based on the proportion of parasitized RBCs in each population over time. This combined approach allows the accurate measurement of both parasitemia and merozoite invasion in an in vivo model of malaria infection.


Infection and Immunity | 2015

Erythrocytic Iron Deficiency Enhances Susceptibility to Plasmodium chabaudi Infection in Mice Carrying a Missense Mutation in Transferrin Receptor 1

Patrick M. Lelliott; Brendan J. McMorran; Simon J. Foote; Gaetan Burgio

ABSTRACT The treatment of iron deficiency in areas of high malaria transmission is complicated by evidence which suggests that iron deficiency anemia protects against malaria, while iron supplementation increases malaria risk. Iron deficiency anemia results in an array of pathologies, including reduced systemic iron bioavailability and abnormal erythrocyte physiology; however, the mechanisms by which these pathologies influence malaria infection are not well defined. In the present study, the response to malaria infection was examined in a mutant mouse line, Tfrc MRI24910 , identified during an N-ethyl-N-nitrosourea (ENU) screen. This line carries a missense mutation in the gene for transferrin receptor 1 (TFR1). Heterozygous mice exhibited reduced erythrocyte volume and density, a phenotype consistent with dietary iron deficiency anemia. However, unlike the case in dietary deficiency, the erythrocyte half-life, mean corpuscular hemoglobin concentration, and intraerythrocytic ferritin content were unchanged. Systemic iron bioavailability was also unchanged, indicating that this mutation results in erythrocytic iron deficiency without significantly altering overall iron homeostasis. When infected with the rodent malaria parasite Plasmodium chabaudi adami, mice displayed increased parasitemia and succumbed to infection more quickly than their wild-type littermates. Transfusion of fluorescently labeled erythrocytes into malaria parasite-infected mice demonstrated an erythrocyte-autonomous enhanced survival of parasites within mutant erythrocytes. Together, these results indicate that TFR1 deficiency alters erythrocyte physiology in a way that is similar to dietary iron deficiency anemia, albeit to a lesser degree, and that this promotes intraerythrocytic parasite survival and an increased susceptibility to malaria in mice. These findings may have implications for the management of iron deficiency in the context of malaria.


Scientific Reports | 2016

A novel ENU-induced ankyrin-1 mutation impairs parasite invasion and increases erythrocyte clearance during malaria infection in mice

Hong Ming Huang; Denis C. Bauer; Patrick M. Lelliott; Andreas Greth; Brendan J. McMorran; Simon J. Foote; Gaetan Burgio

Genetic defects in various red blood cell (RBC) cytoskeletal proteins have been long associated with changes in susceptibility towards malaria infection. In particular, while ankyrin (Ank-1) mutations account for approximately 50% of hereditary spherocytosis (HS) cases, an association with malaria is not well-established, and conflicting evidence has been reported. We describe a novel N-ethyl-N-nitrosourea (ENU)-induced ankyrin mutation MRI61689 that gives rise to two different ankyrin transcripts: one with an introduced splice acceptor site resulting a frameshift, the other with a skipped exon. Ank-1(MRI61689/+) mice exhibit an HS-like phenotype including reduction in mean corpuscular volume (MCV), increased osmotic fragility and reduced RBC deformability. They were also found to be resistant to rodent malaria Plasmodium chabaudi infection. Parasites in Ank-1(MRI61689/+) erythrocytes grew normally, but red cells showed resistance to merozoite invasion. Uninfected Ank-1(MRI61689/+) erythrocytes were also more likely to be cleared from circulation during infection; the “bystander effect”. This increased clearance is a novel resistance mechanism which was not observed in previous ankyrin mouse models. We propose that this bystander effect is due to reduced deformability of Ank-1(MRI61689/+) erythrocytes. This paper highlights the complex roles ankyrin plays in mediating malaria resistance.


Annals of Neurology | 2011

Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci

Nikolaos A. Patsopoulos; Federica Esposito; Joachim Reischl; Stephan Lehr; David Bauer; Jürgen Heubach; Rupert Sandbrink; Christoph Pohl; Gilles Edan; Ludwig Kappos; David Miller; Javier Montalbán; Chris H. Polman; Mark Freedman; Hans-Peter Hartung; Barry G. W. Arnason; Giancarlo Comi; Stuart D. Cook; Massimo Filippi; Douglas S. Goodin; Paul O'Connor; George C. Ebers; Dawn Langdon; Anthony T. Reder; Anthony Traboulsee; Frauke Zipp; Sebastian Schimrigk; Jan Hillert; Melanie Bahlo; David R. Booth

To perform a 1‐stage meta‐analysis of genome‐wide association studies (GWAS) of multiple sclerosis (MS) susceptibility and to explore functional consequences of new susceptibility loci.

Collaboration


Dive into the Simon J. Foote's collaboration.

Top Co-Authors

Avatar

Brendan J. McMorran

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Gaetan Burgio

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Patrick M. Lelliott

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Hong Ming Huang

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arman Namvar

Biotechnology Institute

View shared research outputs
Top Co-Authors

Avatar

Leann Tilley

Biotechnology Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge