Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hong Wu Chen is active.

Publication


Featured researches published by Hong Wu Chen.


Cell | 1998

Oxidized LDL Regulates Macrophage Gene Expression through Ligand Activation of PPARγ

Laszlo Nagy; Peter Tontonoz; Jacqueline G.A Alvarez; Hong Wu Chen; Ronald M. Evans

Macrophage uptake of oxidized low-density lipoprotein (oxLDL) is thought to play a central role in foam cell formation and the pathogenesis of atherosclerosis. We demonstrate here that oxLDL activates PPARgamma-dependent transcription through a novel signaling pathway involving scavenger receptor-mediated particle uptake. Moreover, we identify two of the major oxidized lipid components of oxLDL, 9-HODE and 13-HODE, as endogenous activators and ligands of PPARgamma. Our data suggest that the biologic effects of oxLDL are coordinated by two sets of receptors, one on the cell surface, which binds and internalizes the particle, and one in the nucleus, which is transcriptionally activated by its component lipids. These results suggest that PPARgamma may be a key regulator of foam cell gene expression.


Cell | 1999

Regulation of Hormone-Induced Histone Hyperacetylation and Gene Activation via Acetylation of an Acetylase

Hong Wu Chen; Richard J. Lin; Wen Xie; Damien Wilpitz; Ronald M. Evans

Nuclear receptors have been postulated to regulate gene expression via their association with histone acetylase (HAT) or deacetylase complexes. We report that hormone induces dramatic hyperacetylation at endogenous target genes through the HAT activity of p300/CBP. Unexpectedly, this hyperacetylation is transient and coincides with attenuation of hormone-induced gene activation. In exploring the underlying mechanism, we found that the acetylase ACTR can be acetylated by p300/CBP. The acetylation neutralizes the positive charges of two lysine residues adjacent to the core LXXLL motif and disrupts the association of HAT coactivator complexes with promoter-bound estrogen receptors. These results provide strong in vivo evidence that histone acetylation plays a key role in hormone-induced gene activation and define cofactor acetylation as a novel regulatory mechanism in hormonal signaling.


Cell | 1999

A viral mechanism for inhibition of P300 and PCAF acetyltransferase activity

Debabrata Chakravarti; Vasily V. Ogryzko; Hung Ying Kao; Alyssa Nash; Hong Wu Chen; Yoshihiro Nakatani; Ronald M. Evans

Nucleosomal histone modification is believed to be a critical step in the activation of RNA polymerase II-dependent transcription. p300/CBP and PCAF histone acetyltransferases (HATs) are coactivators for several transcription factors, including nuclear hormone receptors, p53, and Stat1alpha, and participate in transcription by forming an activation complex and by promoting histone acetylation. The adenoviral E1A oncoprotein represses transcriptional signaling by binding to p300/CBP and displacing PCAF and p/CIP proteins from the complex. Here, we show that E1A directly represses the HAT activity of both p300/CBP and PCAF in vitro and p300-dependent transcription in vivo. Additionally, E1A inhibits nucleosomal histone modifications by the PCAF complex and blocks p53 acetylation. These results demonstrate the modulation of HAT activity as a novel mechanism of transcriptional regulation.


Nature | 2002

Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators

Stephen J. Demarest; Maria A. Martinez-Yamout; John Chung; Hong Wu Chen; Wei Xu; H. Jane Dyson; Ronald M. Evans; Peter E. Wright

Nuclear hormone receptors are ligand-activated transcription factors that regulate the expression of genes that are essential for development, reproduction and homeostasis. The hormone response is mediated through recruitment of p160 receptor coactivators and the general transcriptional coactivator CBP/p300, which function synergistically to activate transcription. These coactivators exhibit intrinsic histone acetyltransferase activity, function in the remodelling of chromatin, and facilitate the recruitment of RNA polymerase II and the basal transcription machinery. The activities of the p160 coactivators are dependent on CBP. Both coactivators are essential for proper cell-cycle control, differentiation and apoptosis, and are implicated in cancer and other diseases. To elucidate the molecular basis of assembling the multiprotein activation complex, we undertook a structural and thermodynamic analysis of the interaction domains of CBP and the activator for thyroid hormone and retinoid receptors. Here we show that although the isolated domains are intrinsically disordered, they combine with high affinity to form a cooperatively folded helical heterodimer. Our study uncovers a unique mechanism, called ‘synergistic folding’, through which p160 coactivators recruit CBP/p300 to allow transmission of the hormonal signal to the transcriptional machinery.


Journal of Virology | 2005

Genome-Wide Analysis of Chromosomal Features Repressing Human Immunodeficiency Virus Transcription

Mary K. Lewinski; Dwayne Bisgrove; Paul Shinn; Hong Wu Chen; Christopher Hoffmann; Sridhar Hannenhalli; Eric Verdin; Charles C. Berry; Joseph R. Ecker; Frederic D. Bushman

ABSTRACT We have investigated regulatory sequences in noncoding human DNA that are associated with repression of an integrated human immunodeficiency virus type 1 (HIV-1) promoter. HIV-1 integration results in the formation of precise and homogeneous junctions between viral and host DNA, but integration takes place at many locations. Thus, the variation in HIV-1 gene expression at different integration sites reports the activity of regulatory sequences at nearby chromosomal positions. Negative regulation of HIV transcription is of particular interest because of its association with maintaining HIV in a latent state in cells from infected patients. To identify chromosomal regulators of HIV transcription, we infected Jurkat T cells with an HIV-based vector transducing green fluorescent protein (GFP) and separated cells into populations containing well-expressed (GFP-positive) or poorly expressed (GFP-negative) proviruses. We then determined the chromosomal locations of the two classes by sequencing 971 junctions between viral and cellular DNA. Possible effects of endogenous cellular transcription were characterized by transcriptional profiling. Low-level GFP expression correlated with integration in (i) gene deserts, (ii) centromeric heterochromatin, and (iii) very highly expressed cellular genes. These data provide a genome-wide picture of chromosomal features that repress transcription and suggest models for transcriptional latency in cells from HIV-infected patients.


Molecular and Cellular Biology | 2004

ACTR/AIB1 Functions as an E2F1 Coactivator To Promote Breast Cancer Cell Proliferation and Antiestrogen Resistance

Maggie C. Louie; June X. Zou; Alina Rabinovich; Hong Wu Chen

ABSTRACT Overexpression or amplification of ACTR (also named AIB1, RAC3, p/CIP, TRAM-1, and SRC-3), a member of the p160 family of coactivators for nuclear hormone receptors, has been frequently detected in multiple types of human tumors, including breast cancer. However, its role in cancer cell proliferation and the underlying mechanism are unclear. Here, we show that overexpression of ACTR not only enhances estrogen-stimulated cell proliferation but also, more strikingly, completely negates the cell cycle arrest effect by tamoxifen and pure antiestrogens. Unexpectedly, we found that ACTR directly interacts, through its N-terminal domain, with E2F1 and is recruited to E2F target gene promoters. Elevation of ACTR in quiescent cells strongly stimulates the transcription of a subset of E2F-responsive genes that are associated with the G1/S transition. We also demonstrated, by adenovirus vector-mediated RNA interference, that ACTR is required for E2F1-mediated gene expression and the proliferation of estrogen receptor (ER)-negative breast cancer cells. Moreover, the ability of elevated ACTR to promote estrogen-independent cell proliferation depends on the function of E2F1 and the association between ACTR and E2F1, but not ER. Thus, our results reveal an essential role of ACTR in control of breast cancer cell proliferation and implicate the ACTR-E2F1 pathway as a novel mechanism in antiestrogen resistance.


Current Opinion in Cell Biology | 2001

HATs on and beyond chromatin.

Hong Wu Chen; Marc Tini; Ronald M. Evans

The role of histone acetylation as a key mechanism of transcriptional regulation has been well established. Recent advances suggest that histone acetyltransferases also play important roles in histone-modulated processes such as DNA replication, recombination and repair. In addition, acetylation of transcriptional cofactors and other proteins is an efficient means of regulating a diverse range of molecular interactions. As new histone acetyltransferases and substrates are rapidly emerging, it is becoming apparent that protein acetylation may rival phosphorylation as a mechanism to transduce cellular regulatory signals.


Oncogene | 2004

Interleukin-8 confers androgen-independent growth and migration of LNCaP: differential effects of tyrosine kinases Src and FAK

Li Fen Lee; Maggie C. Louie; Sonal J. Desai; Joy C. Yang; Hong Wu Chen; Christopher P. Evans; Hsing Jien Kung

Interleukin-8 (IL-8), a chemokine implicated in the metastasis and angiogenesis of a variety of cancers, has been reported to be overexpressed in prostate cancer. In this study, we ascribe a new role for IL-8 in prostate cancer progression using LNCaP cells. We demonstrate that IL-8 activates the androgen receptor and confers androgen-independent growth, while serving as a potent chemotactic factor. Our evaluation of the possible signal pathways involved in androgen-independence and cell migration shows that the tyrosine kinases Src and FAK (focal adhesion kinase) are involved in IL-8-induced signaling. Pharmacological and genetic inhibitors of Src and FAK interfere with IL-8-induced cell migration, while only the Src inhibitor was able to repress androgen-independent growth. This suggests that both growth and migration depend on the activity of Src, whereas cell migration also requires the activation of FAK. Our evidence that IL-8-induced androgen-independent growth is, at least in part, due to androgen receptor activation includes (1) an inhibitor of androgen receptor activity diminishes cell growth; (2) androgen receptor transactivation potential is augmented by IL-8 and (3) androgen receptor is recruited to the promoter of prostate specific antigen (PSA) upon IL-8 treatment, based on chromatin immunoprecipitation experiments. Taken together, our data suggest that in addition to its role in metastasis and angiogenesis, IL-8 may also serve as a facilitator for androgen-independent transition of prostate cancers. To our knowledge, this is the first report about the tyrosine kinase signals and androgen receptor activation induced by IL-8 in prostate cancer cells. The observation that IL-8 mediates its growth and chemotactic effects via Src and FAK suggests the potential use for tyrosine kinase inhibitors at early stage of prostate cancer development.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Androgen-induced recruitment of RNA polymerase II to a nuclear receptor–p160 coactivator complex

Maggie C. Louie; Hong Qiong Yang; Ai Hong Ma; Wei Xu; June X. Zou; Hsing Jien Kung; Hong Wu Chen

The androgen receptor, like other nuclear receptors, activates target genes by binding to hormone-responsive enhancers. Here we demonstrate that androgen induces robust recruitment of androgen receptor, members of the p160 coactivator family, and CREB-binding protein/p300 specifically at the distant enhancer of prostate-specific antigen (PSA) gene. Unexpectedly, we found that RNA polymerase II (Pol II) is directly recruited to the enhancer in a hormone-dependent manner, independent of the proximal promoter, and that the isolated PSA enhancer can mediate efficient androgen induction of transcription. Inhibition of the Pol II carboxyl-terminal domain kinase activity with low concentrations of flavopiridol blocks Pol II transfer from the enhancer to the promoter and selectively abolishes PSA induction by androgen. Moreover, elevated levels of the p160 coactivator ACTR/AIB1 increase both androgen-dependent and -independent PSA expression, by facilitating Pol II recruitment to the enhancer. These results support a model in which nuclear receptors and their coactivators mediate hormone induction by serving as a staging platform for Pol II recruitment.


Cancer Research | 2009

Androgen-induced coactivator ANCCA mediates specific androgen receptor signaling in prostate cancer.

June X. Zou; Linlang Guo; Alexey S. Revenko; Clifford G. Tepper; Abigael T. Gemo; Hsing Jien Kung; Hong Wu Chen

Androgen receptor (AR) plays a pivotal role in prostate cancer, primarily by regulating different gene expression programs elicited by androgen, which is important for cancer cell proliferation, survival, and differentiation. It is believed that the transcriptional function of AR is mediated largely by distinct nuclear coregulators. We report here the identification of ANCCA (also known as ATAD2), a new member of the AAA+ ATPase family proteins, as a novel AR coactivator. ANCCA interacts directly with AR and enhances its transcriptional activity, and is required for androgen-stimulated expression of a specific subgroup of genes including IGF1R, IRS-2, SGK1, and survivin. Upon androgen stimulation, ANCCA together with AR is recruited to the specific AR target genes. Suppression of ANCCA expression strongly inhibited the proliferation of androgen-responsive or androgen-independent, AR-positive prostate cancer cells and caused a significant increase of cellular apoptosis. Strikingly, the ANCCA gene itself, located at chromosome 8q24, is highly induced by androgen in androgen-dependent prostate cancer cells and xenograft tumors. Although ANCCA is hardly detected in normal human prostate tissue, high levels of ANCCA are found in hormone-independent prostate cancer cell lines, xenograft tumor, and a subset of prostate cancers with high Gleason scores. Together, these findings suggest that ANCCA plays an important role in prostate cancer by mediating specific AR functions in cancer cell survival and proliferation. The possession of ATPase and bromodomain by ANCCA makes it an attractive target for the development of therapeutics for the disease.

Collaboration


Dive into the Hong Wu Chen's collaboration.

Top Co-Authors

Avatar

June X. Zou

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junjian Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Zhijian Duan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maggie C. Louie

Dominican University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allen C. Gao

University of California

View shared research outputs
Top Co-Authors

Avatar

Xinbin Chen

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge