Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongbo Chen is active.

Publication


Featured researches published by Hongbo Chen.


Chemosphere | 2013

Novel insights into enzymatic-enhanced anaerobic digestion of waste activated sludge by three-dimensional excitation and emission matrix fluorescence spectroscopy

Kun Luo; Qi Yang; Xiaoming Li; Hongbo Chen; Xian Liu; Guojing Yang; Guangming Zeng

In our previous study, it has been proposed that the hydrolysis of waste activated sludge (WAS) can be enhanced by hydrolytic enzymes. In this study, fluorescence spectral characteristics of extracellular polymeric substances (EPSs) and dissolved organic matter (DOM) during anaerobic digestion were investigated using three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy to explore the destruction mechanisms of WAS enhanced by additional enzymes (protease, α-amylase and the mixture). Two individual fluorescence peaks associated with protein-like fluorophores (aromatic and tryptophan protein-like substances) were identified in the EEM fluorescence spectra of the EPS after 1 and 6d, and only aromatic protein-like substances were observed after 12d of anaerobic digestion for all treatments. As for the DOM, three individual fluorescence peaks were identified, but the peaks associated with visible humic acid-like fluorophores disappeared after 12d. The EEM fluorescence intensity of EPS decreased during the entire anaerobic process, whereas that of the DOM increased at 1d and then decreased till the end. In the EPS, the residual protein-like substances were found to be the lowest during the entire anaerobic process when treated with protease. Correspondingly, the protein-like substances in the DOM increased rapidly from 1 to 6d, and decreased to the lowest level after 12d for the protease treatment.


Scientific Reports | 2015

An efficient process for wastewater treatment to mitigate free nitrous acid generation and its inhibition on biological phosphorus removal

Jianwei Zhao; Dongbo Wang; Xiaoming Li; Qi Yang; Hongbo Chen; Yu Zhong; Hongxue An; Guangming Zeng

Free nitrous acid (FNA), which is the protonated form of nitrite and inevitably produced during biological nitrogen removal, has been demonstrated to strongly inhibit the activity of polyphosphate accumulating organisms (PAOs). Herein we reported an efficient process for wastewater treatment, i.e., the oxic/anoxic/oxic/extended-idle process to mitigate the generation of FNA and its inhibition on PAOs. The results showed that this new process enriched more PAOs which thereby achieved higher phosphorus removal efficiency than the conventional four-step (i.e., anaerobic/oxic/anoxic/oxic) biological nutrient removal process (41 ± 7% versus 30 ± 5% in abundance of PAOs and 97 ± 0.73% versus 82 ± 1.2% in efficiency of phosphorus removal). It was found that this new process increased pH value but decreased nitrite accumulation, resulting in the decreased FNA generation. Further experiments showed that the new process could alleviate the inhibition of FNA on the metabolisms of PAOs even under the same FNA concentration.


Chemosphere | 2014

Effects of Cd(II) on wastewater biological nitrogen and phosphorus removal

Hongbo Chen; Dongbo Wang; Xiaoming Li; Qi Yang; Kun Luo; Guangming Zeng; Maolin Tang

Short-term and long-term effects of Cd(II) on wastewater biological nitrogen and phosphorus removal were investigated with respect to microorganism abundances, enzyme activities, and polyhydroxyalkanoates (PHAs) and glycogen transformations. Though no obvious effects on wastewater biological nutrient removal were observed after short-term exposure, the long-term exposure of 10 mg L(-)(1) Cd(II) inhibited nitrification and phosphorus uptake. Compared with the absence of Cd(II), the presence of 10 mg L(-1) of Cd(II) decreased total nitrogen and phosphorus removal efficiencies from 97% and 98% to 88% and 18%, respectively. Mechanism studies revealed that Cd(II) affected the transformations of intracellular PHAs and glycogen, and the activities of oxidoreductase and polyphosphate kinase, resulted in the decrease of nitrite oxidizing bacteria and polyphosphate accumulating organisms abundance, which might be the major reason for the negative effects of long-term exposure to 10 mg L(-1) Cd(II) on biological nitrogen and phosphorus removal.


Science of The Total Environment | 2017

Effect of ciprofloxacin on biological nitrogen and phosphorus removal from wastewater

Kaixin Yi; Dongbo Wang; QiYang; Xiaoming Li; Hongbo Chen; Hongxue An; Liqun Wang; Yongchao Deng; Jun Liu; Guangming Zeng

In this work, both short-term and long-term experiments were therefore conducted to assess the effects of ciprofloxacin (0.2 and 2mg·L-1) on wastewater nutrient removal. The results showed that both levels of ciprofloxacin had no acute and chronic adverse effects on the surface integrity and viability of activated sludge. Short-term exposure to all the ciprofloxacin levels induced negligible influences on wastewater nutrient removal. However, the prolonged exposure to ciprofloxacin decreased total phosphorus and nitrogen removal efficiencies from 96.8, 95.8% (control) to 91.7, 84.9% (0.2mg·L-1) and 90.5%, 80.2% (2mg·L-1), respectively. The mechanism study showed that ciprofloxacin exposure suppressed denitrification and phosphorus uptake processes. It was also found that ciprofloxacin affected the transformations of intracellular polyhydroxyalkanoates and glycogen in the oxic and anoxic stages. Moreover the activities of nitrite reductase and polyphosphate kinase were inhibited by the presence of ciprofloxacin. Further analysis with high-throughput sequencing revealed that compared with the control, the abundances of polyphosphate accumulating organisms, glycogen accumulating organisms and denitrifying bacteria in ciprofloxacin exposure reactors reduced, which were consistent with the decreased nutrient removal performance measured in these reactors.


Chemosphere | 2013

Post-anoxic denitrification via nitrite driven by PHB in feast-famine sequencing batch reactor.

Hongbo Chen; Qi Yang; Xiaoming Li; Yan Wang; Kun Luo; Guangming Zeng

Recently, it was found that excess phosphorus removal could be induced by aerobic/extended-idle regime. In this study, an anoxic period was introduced after the aeration to realize simultaneous nitrogen and phosphorus removal. The results demonstrated that stable partial nitrification could be achieved by controlling the aeration duration at 2.5h because it could not only obtain a desirable ammonia oxidation to nitrite but also avoid the extensive aeration converting nitrite to nitrate, and moreover, the accumulated poly-3-hydroxybutyrate still remain in a relative sufficient concentration (1.5mmolCg(-1) VSS), which could subsequently served as internal carbon source for post-anoxic denitrification. The nitrite accumulation ratio was observed to have relatively high correlation with biological nutrient removal. Over stages with stable high-level nitrite accumulation, the process achieved desirable and stable nitrogen and phosphorus removal efficiencies averaging 95% and 99% respectively. Fluorescence in situ hybridization analysis showed that the faster growth rate of the ammonia oxidizing bacteria than the nitrite oxidizing bacteria was the main reason for achieving nitrite accumulation. In addition, the secondary phosphorus release was negligible and the process maintained excellent nutrient removal under low influent ammonia nitrogen.


Bioresource Technology | 2013

Enhanced biological nutrient removal in sequencing batch reactors operated as static/oxic/anoxic (SOA) process.

Dechao Xu; Hongbo Chen; Xiaoming Li; Qi Yang; Tian-jing Zeng; Kun Luo; Guangming Zeng

An innovative static/oxic/anoxic (SOA) activated sludge process characterized by static phase as a substitute for conventional anaerobic stage was developed to enhance biological nutrient removal (BNR) with influent ammonia of 20 and 40 mg/L in R1 and R2 reactors, respectively. The results demonstrated that static phase could function as conventional anaerobic stage. In R1 lower influent ammonia concentration facilitated more polyphosphate accumulating organisms (PAOs) growth, but secondary phosphorus release occurred due to NOx(-) depletion during post-anoxic period. In R2, however, denitrifying phosphorus removal proceeded with sufficient NOx(-). Both R1 and R2 saw simultaneous nitrification-denitrification. Glycogen was utilized to drive post-denitrification with denitrification rates in excess of typical endogenous decay rates. The anoxic stirring duration could be shortened from 3 to 1.5h to avoid secondary phosphorus release in R1 and little adverse impact was found on nutrients removal in R2.


Chemosphere | 2014

Biological nutrient removal in a sequencing batch reactor operated as oxic/anoxic/extended-idle regime

Xiaoming Li; Hongbo Chen; Qi Yang; Dongbo Wang; Kun Luo; Guangming Zeng

Previous researches have demonstrated that biological phosphorus removal from wastewater could be induced by oxic/extended-idle (O/EI) regime. In this study, an anoxic period was introduced after the aeration to realize biological nutrient removal. High nitrite accumulation ratio and polyhydroxyalkanoates biosynthesis were obtained in the aeration and biological nutrient removal could be well achieved in oxic/anoxic/extended-idle (O/A/EI) regime for the wastewater used. In addition, nitrogen and phosphorus removal performance in O/A/EI regime was compared with that in conventional anaerobic/anoxic/aerobic (A(2)/O) and O/EI processes. The results showed that O/A/EI regime exhibited higher nitrogen and phosphorus removal than A(2)/O and O/EI processes. More ammonium oxidizing bacteria and polyphosphate accumulating organisms and less glycogen accumulating organisms containing in the biomass might be the principal reason for the better nitrogen and phosphorus removal in O/A/EI regime. Furthermore, biological nutrient removal with O/A/EI regime was demonstrated with municipal wastewater. The average TN, SOP and COD removal efficiencies were 93%, 95% and 87%, respectively.


Water Research | 2015

Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge.

Jianwei Zhao; Dongbo Wang; Xiaoming Li; Qi Yang; Hongbo Chen; Yu Zhong; Guangming Zeng


Industrial & Engineering Chemistry Research | 2013

Simultaneous Adsorption/Reduction of Bromate by Nanoscale Zerovalent Iron Supported on Modified Activated Carbon

Xiuqiong Wu; Qi Yang; Dechao Xu; Yu Zhong; Kun Luo; Xiaoming Li; Hongbo Chen; Guangming Zeng


Biochemical Engineering Journal | 2016

Full-scale evaluation of aerobic/extended-idle regime inducing biological phosphorus removal and its integration with intermittent sand filter to treat domestic sewage discharged from highway rest area

Hongbo Chen; Yiwen Liu; Bing-Jie Ni; Qilin Wang; Dongbo Wang; Chang Zhang; Xiaoming Li; Guangming Zeng

Collaboration


Dive into the Hongbo Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge