Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongchuan Jin is active.

Publication


Featured researches published by Hongchuan Jin.


Gut | 2009

Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening

Enders K.O. Ng; W. Chong; Hongchuan Jin; Emily K.Y. Lam; Vivian Y. Shin; J Yu; T C W Poon; Simon S.M. Ng; J J Y Sung

Objective: MicroRNAs (miRNAs) have been shown to offer great potential in the diagnosis of cancer. We investigated whether plasma miRNAs could discriminate between patients with and without colorectal cancer (CRC). Methods: This study was divided into three phases: (1) marker discovery using real-time PCR-based miRNA profiling on plasma, corresponding cancerous and adjacent non-cancerous colonic tissues of five patients with CRC, along with plasma from five healthy individuals as controls; (2) marker selection and validation by real-time quantitative RT-PCR on a small set of plasma; and (3) independent validation on a large set of plasma from 90 patients with CRC, 20 patients with gastric cancer, 20 patients with inflammatory bowel disease (IBD) and 50 healthy controls. Results: Of the panel of 95 miRNAs analysed, five were upregulated both in plasma and tissue samples. All the five miRNAs were validated on the plasma of 25 patients with CRC and 20 healthy controls. Both miR-17-3p and miR-92 were significantly elevated in the patients with CRC (p<0.0005). The plasma levels of these markers were significantly reduced after surgery in 10 patients with CRC (p<0.05). Further validation with an independent set of plasma samples (n = 180) indicated that miR-92 differentiates CRC from gastric cancer, IBD and normal subjects. This marker yielded a receiver operating characteristic curve area of 88.5%. At a cut-off of 240 (relative expression in comparison to RNU6B snRNA), the sensitivity was 89% and the specificity was 70% in discriminating CRC from control subjects. Conclusion: MiR-92 is significantly elevated in plasma of patients with CRC and can be a potential non-invasive molecular marker for CRC screening.


British Journal of Cancer | 2009

MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer

Enders Ko Ng; Wing Pui Tsang; Simon S.M. Ng; Hongchuan Jin; J Yu; Jiaqiu Li; Christoph Röcken; Matthias P.A. Ebert; Tim Tak Kwok; J. J. Y. Sung

Background:MicroRNAs (miRNAs) are 19-25-nucleotides regulatory non-protein-coding RNA molecules that regulate the expressions of a wide variety of genes, including some involved in cancer development. In this study, we investigated the possible role of miR-143 in colorectal cancer (CRC).Methods:Expression levels of human mature miRNAs were examined using real-time PCR-based expression arrays on paired colorectal carcinomas and adjacent non-cancerous colonic tissues. The downregulation of miR-143 was further evaluated in colon cancer cell lines and in paired CRC and adjacent non-cancerous colonic tissues by qRT–PCR. Potential targets of miR-143 were defined. The functional effect of miR-143 and its targets was investigated in human colon cancer cell lines to confirm miRNA–target association.Results:Both real-time PCR-based expression arrays and qRT–PCR showed that miR-143 was frequently downregulated in 87.5% (35 of 40) of colorectal carcinoma tissues compared with their adjacent non-cancerous colonic tissues. Using in silico predictions, DNA methyltranferase 3A (DNMT3A) was defined as a potential target of miR-143. Restoration of the miR-143 expression in colon cell lines decreased tumour cell growth and soft-agar colony formation, and downregulated the DNMT3A expression in both mRNA and protein levels. DNMT3A was shown to be a direct target of miR-143 by luciferase reporter assay. Furthermore, the miR-143 expression was observed to be inversely correlated with DNMT3A mRNA and protein expression in CRC tissues.Conclusion:Our findings suggest that miR-143 regulates DNMT3A in CRC. These findings elucidated a tumour-suppressive role of miR-143 in the epigenetic aberration of CRC, providing a potential development of miRNA-based targeted approaches for CRC therapy.


Gastroenterology | 2009

Methylation of Protocadherin 10, a Novel Tumor Suppressor, Is Associated With Poor Prognosis in Patients With Gastric Cancer

Jun Yu; Yuen Yee Cheng; Qian Tao; Kin-Fai Cheung; Cleo Nga Yee Lam; Hua Geng; Linwei Tian; Ying P. Wong; Joanna Tong; Jianming Ying; Hongchuan Jin; Ka Fai To; Francis Ka-Leung Chan; Joseph J.Y. Sung

BACKGROUND & AIMS By using methylation-sensitive representational difference analysis, we identified protocadherin 10 (PCDH10), a gene that encodes a protocadherin and is silenced in a tumor-specific manner. We analyzed its epigenetic inactivation, biological effects, and prognostic significance in gastric cancer. METHODS Methylation status was evaluated by combined bisulfite restriction analysis and bisulfite sequencing. The effects of PCDH10 re-expression were determined in growth, apoptosis, proliferation, and invasion assays. PCDH10 target genes were identified by complementary DNA microarray analysis. RESULTS PCDH10 was silenced or down-regulated in 94% (16 of 17) of gastric cancer cell lines; expression levels were restored by exposure to demethylating agents. Re-expression of PCDH10 in MKN45 gastric cancer cells reduced colony formation in vitro and tumor growth in mice; it also inhibited cell proliferation (P < .01), induced cell apoptosis (P < .001), and repressed cell invasion (P < .05), up-regulating the pro-apoptosis genes Fas, Caspase 8, Jun, and CDKN1A; the antiproliferation gene FGFR; and the anti-invasion gene HTATIP2. PCDH10 methylation was detected in 82% (85 of 104) of gastric tumors compared with 37% (38 of 104) of paired nontumor tissues (P < .0001). In the latter, PCDH10 methylation was higher in precancerous lesions (27 of 45; 60%) than in chronic gastritis samples (11 of 59; 19%) (P < .0001). After a median follow-up period of 16.8 months, multivariate analysis revealed that patients with PCDH10 methylation in adjacent nontumor areas had a significant decrease in overall survival. Kaplan-Meier survival curves showed that PCDH10 methylation was associated significantly with shortened survival in stage I-III gastric cancer patients. CONCLUSIONS PCDH10 is a gastric tumor suppressor; its methylation at early stages of gastric carcinogenesis is an independent prognostic factor.


PLOS ONE | 2013

Circulating microRNAs as Specific Biomarkers for Breast Cancer Detection

Enders K.O. Ng; Rufina Li; Vivian Y. Shin; Hongchuan Jin; Candy P. H. Leung; Edmond S. K. Ma; Roberta Pang; Daniel Chua; Kent-Man Chu; Wl Law; Simon Law; Ronnie Tung-Ping Poon; Ava Kwong

Background We previously showed microRNAs (miRNAs) in plasma are potential biomarkers for colorectal cancer detection. Here, we aimed to develop specific blood-based miRNA assay for breast cancer detection. Methodology/Principal Findings TaqMan-based miRNA profiling was performed in tumor, adjacent non-tumor, corresponding plasma from breast cancer patients, and plasma from matched healthy controls. All putative markers identified were verified in a training set of breast cancer patients. Selected markers were validated in a case-control cohort of 170 breast cancer patients, 100 controls, and 95 other types of cancers and then blindly validated in an independent set of 70 breast cancer patients and 50 healthy controls. Profiling results showed 8 miRNAs were concordantly up-regulated and 1 miRNA was concordantly down-regulated in both plasma and tumor tissue of breast cancer patients. Of the 8 up-regulated miRNAs, only 3 were significantly elevated (p<0.0001) before surgery and reduced after surgery in the training set. Results from the validation cohort showed that a combination of miR-145 and miR-451 was the best biomarker (p<0.0001) in discriminating breast cancer from healthy controls and all other types of cancers. In the blind validation, these plasma markers yielded Receiver Operating Characteristic (ROC) curve area of 0.931. The positive predictive value was 88% and the negative predictive value was 92%. Altered levels of these miRNAs in plasma have been detected not only in advanced stages but also early stages of tumors. The positive predictive value for ductal carcinoma in situ (DCIS) cases was 96%. Conclusions These results suggested that these circulating miRNAs could be a potential specific biomarker for breast cancer screening.


Nature | 2006

Tumorigenic transformation by CPI-17 through inhibition of a merlin phosphatase

Hongchuan Jin; Tobias Sperka; Peter Herrlich; Helen Morrison

The tumour suppressor protein merlin (encoded by the neurofibromatosis type 2 gene NF2) is an important regulator of proliferation in many cell and tissue types. Merlin is activated by dephosphorylation at serine 518 (S518), which occurs on serum withdrawal or on cell–cell or cell–matrix contact. However, the relevant phosphatase that activates merlins tumour suppressor function is unknown. Here we identify this enzyme as the myosin phosphatase (MYPT-1–PP1δ). The cellular MYPT-1–PP1δ-specific inhibitor CPI-17 causes a loss of merlin function characterized by merlin phosphorylation, Ras activation and transformation. Constitutively active merlin (S518A) reverses CPI-17-induced transformation, showing that merlin is the decisive substrate of MYPT-1–PP1δ in tumour suppression. In addition we show that CPI-17 levels are raised in several human tumour cell lines and that the downregulation of CPI-17 induces merlin dephosphorylation, inhibits Ras activation and abolishes the transformed phenotype. MYPT-1–PP1δ and its substrate merlin are part of a previously undescribed tumour suppressor cascade that can be hindered in two ways, by mutation of the NF2 gene and by upregulation of the oncoprotein CPI-17.


Cancer Research | 2011

EZH2-Mediated Concordant Repression of Wnt Antagonists Promotes β-Catenin–Dependent Hepatocarcinogenesis

Alfred S.L. Cheng; Suki S. Lau; Yangchao Chen; Yutaka Kondo; May S. Li; Hai Feng; Arthur K.K. Ching; Kin Fai Cheung; Hoi K. Wong; Joanna H. Tong; Hongchuan Jin; Kwong Wai Choy; Jun Yu; Ka F. To; Nathalie Wong; Tim H M Huang; Joseph J.Y. Sung

Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of the Polycomb-repressive complex 2 (PRC2) that represses gene transcription through histone H3 lysine 27 trimethylation (H3K27me3). Although EZH2 is abundantly present in various cancers, the molecular consequences leading to oncogenesis remain unclear. Here, we show that EZH2 concordantly silences the Wnt pathway antagonists operating at several subcellular compartments, which in turn activate Wnt/β-catenin signaling in hepatocellular carcinomas (HCC). Chromatin immunoprecipitation promoter array and gene expression analyses in HCCs revealed EZH2 occupancy and reduced expression of Wnt antagonists, including the growth-suppressive AXIN2, NKD1, PPP2R2B, PRICKLE1, and SFRP5. Knockdown of EZH2 reduced the promoter occupancy of PRC2, histone deacetylase 1 (HDAC1), and H3K27me3, whereas the activating histone marks were increased, leading to the transcriptional upregulation of the Wnt antagonists. Combinatorial EZH2 and HDAC inhibition dramatically reduced the levels of nuclear β-catenin, T-cell factor-dependent transcriptional activity, and downstream pro-proliferative targets CCND1 and EGFR. Functional analysis revealed that downregulation of EZH2 reduced HCC cell growth, partially through the inhibition of β-catenin signaling. Conversely, ectopic overexpression of EZH2 in immortalized hepatocytes activated Wnt/β-catenin signaling to promote cellular proliferation. In human HCCs, concomitant overexpression of EZH2 and β-catenin was observed in one-third (61/179) of cases and significantly correlated with tumor progression. Our data indicate that EZH2-mediated epigenetic silencing contributes to constitutive activation of Wnt/β-catenin signaling and consequential proliferation of HCC cells, thus representing a novel therapeutic target for this highly malignant tumor.


PLOS ONE | 2011

EGFR Tyrosine Kinase Inhibitors Activate Autophagy as a Cytoprotective Response in Human Lung Cancer Cells

Weidong Han; Hongming Pan; Yan Chen; Jie Sun; Yanshan Wang; Jing Li; Weiting Ge; Lifeng Feng; Xiaoying Lin; Xiaojia Wang; Xian Wang; Hongchuan Jin

Epidermal growth factor receptor tyrosine kinase inhibitors gefitinib and erlotinib have been widely used in patients with non-small-cell lung cancer. Unfortunately, the efficacy of EGFR-TKIs is limited because of natural and acquired resistance. As a novel cytoprotective mechanism for tumor cell to survive under unfavorable conditions, autophagy has been proposed to play a role in drug resistance of tumor cells. Whether autophagy can be activated by gefitinib or erlotinib and thereby impair the sensitivity of targeted therapy to lung cancer cells remains unknown. Here, we first report that gefitinib or erlotinib can induce a high level of autophagy, which was accompanied by the inhibition of the PI3K/Akt/mTOR signaling pathway. Moreover, cytotoxicity induced by gefitinib or erlotinib was greatly enhanced after autophagy inhibition by the pharmacological inhibitor chloroquine (CQ) and siRNAs targeting ATG5 and ATG7, the most important components for the formation of autophagosome. Interestingly, EGFR-TKIs can still induce cell autophagy even after EGFR expression was reduced by EGFR specific siRNAs. In conclusion, we found that autophagy can be activated by EGFR-TKIs in lung cancer cells and inhibition of autophagy augmented the growth inhibitory effect of EGFR-TKIs. Autophagy inhibition thus represents a promising approach to improve the efficacy of EGFR-TKIs in the treatment of patients with advanced non-small-cell lung cancer.


Carcinogenesis | 2011

NF-κB targets miR-16 and miR-21 in gastric cancer: involvement of prostaglandin E receptors

Vivian Y. Shin; Hongchuan Jin; Enders K.O. Ng; Alfred S.L. Cheng; W. Chong; Christine Y.P. Wong; Wai K. Leung; Joseph J.Y. Sung; Kent-Man Chu

Cigarette smoke is one of the risk factors for gastric cancer and nicotine has been reported to promote tumor growth. Deregulation of microRNA (miRNA) and cyclooxygenase-2 (COX-2) expressions are hallmarks of many cancers including gastric cancer. Here, we used an miRNA array platform covering a panel of 95 human miRNAs to examine the expression profile in nicotine-treated gastric cancer cells. We found that miR-16 and miR-21 were upregulated upon nicotine stimulation, transfection with anti-miR-16 or anti-miR-21 significantly abrogated cell proliferation. In contrast, ectopic miR-16 or miR-21 expression exhibited a similar stimulatory effect on cell proliferation as nicotine. Nicotine-mediated IkappaBα degradation and nuclear factor-kappa B (NF-κB) translocation dose-dependently. Knockdown of NF-κB by short interfering RNA (siRNA) or specific inhibitor (Bay-11-7085) markedly suppressed nicotine-induced cell proliferation and upregulation of miR-16 and miR-21. Interestingly, NF-κB-binding sites were located in both miR-16 and miR-21 gene transcriptional elements and we showed that nicotine enhanced the binding of NF-κB to the promoters of miR-16 and miR-21. Furthermore, activation of COX-2/prostaglandin E₂ (PGE₂) signaling in response to nicotine was mediated by the action of prostaglandin E receptors (EP2 and EP4). EP2 or EP4 siRNA or antagonists impaired the nicotine-mediated NF-κB activity, upregulation of miR-16 and miR-21 and cell proliferation. Taken together, these results suggest that miR-16 and miR-21 are directly regulated by the transcription factor NF-κB and yet nicotine-promoted cell proliferation is mediated via EP2/4 receptors. Perhaps this study may shed light on the development of anticancer drugs to improve the chemosensitivity in smokers.


Oncogene | 2010

Warburg effect revisited: an epigenetic link between glycolysis and gastric carcinogenesis

Xiangguo Liu; Wang X; J Zhang; Emily K.Y. Lam; Vivian Y. Shin; Alfred S.L. Cheng; Jowie C.H. Yu; Francis K.L. Chan; J. J. Y. Sung; Hongchuan Jin

In cancer cells, glucose is often converted into lactic acid, which is known as the ‘Warburg effect’. The reason that cancer cells have a higher rate of aerobic glycolysis, but not oxidative phosphorylation, remains largely unclear. Herein, we proposed an epigenetic mechanism of the Warburg effect. Fructose-1,6-bisphosphatase-1 (FBP1), which functions to antagonize glycolysis was downregulated through NF-kappaB pathway in Ras-transformed NIH3T3 cells. Restoration of FBP1 expression suppressed anchorage-independent growth, indicating the relevance of FBP1 downregulation in carcinogenesis. Indeed, FBP1 was downregulated in gastric carcinomas (P<0.01, n=22) and gastric cancer cell lines (57%, 4/7). Restoration of FBP1 expression reduced growth and glycolysis in gastric cancer cells. Moreover, FBP1 downregulation was reversed by pharmacological demethylation. Its promoter was hypermethylated in gastric cancer cell lines (57%, 4/7) and gastric carcinomas (33%, 33/101). Inhibition of NF-kappaB restored FBP1 expression, partially through demethylation of FBP1 promoter. Notably, Cox regression analysis revealed FBP1 promoter methylation as an independent prognosis predicator for gastric cancer (hazard ratio: 3.60, P=0.010). In summary, we found that NF-kappaB functions downstream of Ras to promote epigenetic downregulation of FBP1. Promoter methylation of FBP1 can be used as a new biomarker for prognosis prediction of gastric cancer. Such an important epigenetic link between glycolysis and carcinogenesis partly explains the Warburg effect.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Epigenetic silencing of a Ca2+-regulated Ras GTPase-activating protein RASAL defines a new mechanism of Ras activation in human cancers

Hongchuan Jin; Xian Wang; Jianming Ying; Ada H.Y. Wong; Yan Cui; Gopesh Srivastava; Zhong Ying Shen; En Min Li; Qian Zhang; Jie Jin; Sabine Kupzig; Anthony T.C. Chan; Peter J. Cullen; Qian Tao

Ras has achieved notoriety as an oncogene aberrantly activated in multiple human tumors. Approximately 30% of all human tumors express an oncogenic form of this GTPase that is locked in an active conformation as a result of being insensitive to Ras GTPase-activating proteins (GAPs), proteins that normally regulate the inactivation of Ras by enhancing its intrinsic GTPase activity. Besides oncogenic mutations in Ras, signaling by wild-type Ras is also frequently deregulated in tumors through aberrant coupling to activated cell surface receptors. This indicates that alternative mechanisms of aberrant wild-type Ras activation may be involved in tumorigenesis. Here, we describe another mechanism through which aberrant Ras activation is achieved in human cancers. We have established that Ras GTPase-activating-like protein (RASAL), a Ca2+-regulated Ras GAP that decodes the frequency of Ca2+ oscillations, is silenced through CpG methylation in multiple tumors. With the finding that ectopic expression of catalytically active RASAL leads to growth inhibition of these tumor cells by Ras inactivation, we have provided evidence that epigenetically silencing of this Ras GAP represents a mechanism of aberrant Ras activation in certain cancers. Our demonstration that RASAL constitutes a tumor suppressor gene has therefore further emphasized the importance of Ca2+ in the regulation of Ras signaling and has established that deregulation of this pathway is an important step in Ras-mediated tumorigenesis.

Collaboration


Dive into the Hongchuan Jin's collaboration.

Top Co-Authors

Avatar

Xian Wang

Sir Run Run Shaw Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph J.Y. Sung

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Yu

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Jun Yu

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenxia Xu

Sir Run Run Shaw Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge