Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongen Lei is active.

Publication


Featured researches published by Hongen Lei.


The World Journal of Men's Health | 2013

Low-Intensity Shock Wave Therapy and Its Application to Erectile Dysfunction

Hongen Lei; Jing Liu; Huixi Li; Lin Wang; Yongde Xu; Wenjie Tian; Guiting Lin; Zhongcheng Xin

Although phosphodiesterase type 5 inhibitors (PDE5Is) are a revolution in the treatment of erectile dysfunction (ED) and have been marketed since 1998, they cannot restore pathological changes in the penis. Low-energy shock wave therapy (LESWT) has been developed for treating ED, and clinical studies have shown that LESWT has the potential to affect PDE5I non-responders with ED with few adverse effects. Animal studies have shown that LESWT significantly improves penile hemodynamics and restores pathological changes in the penis of diabetic ED animal models. Although the mechanisms remain to be investigated, recent studies have reported that LESWT could partially restore corpus cavernosum fibromuscular pathological changes, endothelial dysfunction, and peripheral neuropathy. LESWT could be a novel modality for treating ED, and particularly PDE5I non-responders with organic ED, in the near future. However, further extensive evidence-based basic and clinical studies are needed. This review intends to summarize the scientific background underlying the effect of LESWT on ED.


The Journal of Sexual Medicine | 2014

Therapeutic Potential of Adipose‐Derived Stem Cells‐Based Micro‐Tissues in a Rat Model of Postprostatectomy Erectile Dysfunction

Yongde Xu; Ruili Guan; Hongen Lei; Huixi Li; Lin Wang; Zhezhu Gao; Weidong Song; Zhongcheng Xin

INTRODUCTION Stem cells (SCs) show significant benefits in the treatment of postprostatectomy erectile dysfunction (ED). However, the low retention rate of the traditional single-cell strategy at the injection sites limits its therapeutic potential. AIM This study aims to investigate the feasibility and mechanism of adipose-derived stem cells (ADSCs)-based micro-tissues (MTs) in the treatment of ED in a rat model of bilateral cavernous nerves (CNs) injury. METHODS ADSCs labeled with 5-ethynyl-2-deoxyuridine (EdU) were used to generate MTs with hanging drop method. 10 Sprague-Dawley (SD) rats underwent sham surgery and intracavernous (IC) injection of phosphate buffer solution (PBS) (the sham group). Another 70 rats underwent bilateral CN crush and were then treated with PBS (n = 10, the crush group), dissociated ADSCs (n = 30, the ADSCs group), and MTs (n = 30, the MTs group), respectively. At day 1, 3, 7, 14 (n = 5), and 28 (n = 10) postsurgery, specimens were harvested for histology. At day 28, 10 rats in each group were examined for erectile function before tissue harvest. MAIN OUTCOME MEASURES Light microscopy of the dynamic aggregation of the MT, immunohistologic examination of the MTs, the retention and distribution of EdU + ADSCs in the corpus cavernosum (CC), and the penis histological analyses of collagen content, Western blot of functional proteins in MTs, intracavernous pressure recording on CN electrostimulation. RESULTS Three-day-old MTs became stable and expressed nerve growth factor, vascular endothelial growth factor, C-X-C chemokine receptor type 4, Wnt5a, and collagen IV. More EdU + ADSCs retained in the CC in the MTs group than that in the ADSCs group. IC injection of MTs resulted in significant restoration of the erectile function and histopathological changes compared with the ADSCs group. CONCLUSION IC-injected MTs resulted in a better restoration of erectile function than traditional single-cell strategy. The underlying mechanisms of recovery appear to involve enhanced cellular retention in the penis and upregulation of some paracrine factors.


Translational Andrology and Urology | 2016

Clinical applications of low-intensity pulsed ultrasound and its potential role in urology

Zhongcheng Xin; Guiting Lin; Hongen Lei; Tom F. Lue; Yinglu Guo

Low-intensity pulsed ultrasound (LIPUS) is a form of ultrasound that delivered at a much lower intensity (<3 W/cm2) than traditional ultrasound energy and output in the mode of pulse wave, and it is typically used for therapeutic purpose in rehabilitation medicine. LIPUS has minimal thermal effects due to its low intensity and pulsed output mode, and its non-thermal effects which is normally claimed to induce therapeutic changes in tissues attract most researchers’ attentions. LIPUS have been demonstrated to have a rage of biological effects on tissues, including promoting bone-fracture healing, accelerating soft-tissue regeneration, inhibiting inflammatory responses and so on. Recent studies showed that biological effects of LIPUS in healing morbid body tissues may be mainly associated with the upregulation of cell proliferation through activation of integrin receptors and Rho/ROCK/Src/ERK signaling pathway, and with promoting multilineage differentiation of mesenchyme stem/progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway. Hopefully, LIPUS may become an effective clinical procedure for the treatment of urological diseases, such as chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), erectile dysfunction (ED), and stress urinary incontinence (SUI) in the field of urology. It still needs an intense effort for basic-science and clinical investigators to explore the biomedical applications of ultrasound.


Biochemical and Biophysical Research Communications | 2014

Studies on the mechanism of testicular dysfunction in the early stage of a streptozotocin induced diabetic rat model

Yongde Xu; Hongen Lei; Ruili Guan; Zhezhu Gao; Huixi Li; Lin Wang; Weidong Song; Bing Gao; Zhongcheng Xin

Streptozotocin (STZ) induced diabetic model has been widely used to study the effects of diabetes mellitus (DM) on male infertility, but it remains unclear whether the responses in this model are due to hyperglycemia or STZ per se. This study was designed to investigate the mechanism of STZ on testicular dysfunction. In the present study, sperm characteristics, serum testosterone, steroidogenic enzymes (StAR and 3β-HSD), and the vimentin apical extension of sertoli cells decreased significantly in the STZ group compared with those in the normal controls (p<0.05), while Johnsens score, testicular lipid peroxidation, spermatogenic cell apoptosis, and the expressions of NF-κB and Wnt4 significantly increased (p<0.05). Insulin replacement mainly restored the decreased serum testosterone and steroidogenic enzymes, but not other parameters. The results indicated that spermatogenic dysfunction in the early stage of STZ-induced diabetic rats was due to direct STZ cytotoxicity to sertoli cells, which could be regulated by Wnt4 and NF-κB, while steroidogenic dysfunction might be a direct or indirect consequence of insulin deficiency. The results suggested that STZ-induced diabetic model, at least in the early stage, is not suitable to study the diabetes-related spermatogenic dysfunction.


Journal of Cellular and Molecular Medicine | 2015

Antioxidant icariside II combined with insulin restores erectile function in streptozotocin-induced type 1 diabetic rats

Lin Wang; Yongde Xu; Huixi Li; Hongen Lei; Ruili Guan; Zhezhu Gao; Zhongcheng Xin

Erectile dysfunction (ED) worsens in patients with diabetes mellitus (DM) despite good control of blood glucose level with insulin. Recent studies imply that diabetic vascular stresses (e.g. oxidative stress) persist in spite of glucose normalization, which is defined as metabolic memory. Studies suggest that the interaction between advanced glycation end products (AGEs) and their receptor (RAGE) mediates the development of metabolic memory. To investigate the effects of the antioxidant icariside II plus insulin on erectile function in streptozotocin (STZ)‐ induced type 1 diabetic rats. Fifty 8‐week‐old Sprague‐Dawley rats were randomly distributed into five groups: normal control, diabetic, insulin‐treated diabetic, icariside II‐treated diabetic, and insulin plus icariside II‐treated diabetic. Diabetes was induced by a single intraperitoneal injection of STZ. Eight weeks after induction of diabetes, icariside II was administered by gastric lavage once a day (5 mg/kg) for 6 weeks; and 2–6 units of intermediate‐acting insulin were given to maintain normal glycemia for 6 weeks. The main outcome measures were the ratio of intracavernous pressure (ICP) to mean arterial pressure (MAP); histology of penile endothelial cells and smooth muscle cells; neural nitric oxide synthase, AGEs and RAGE expression; malondialdehyde concentration; superoxide dismutase activity; and apoptosis index. Diabetic rats demonstrated a significantly lower ICP/MAP ratio, reduced penile endothelial cells, reduced smooth muscle cells, increased AGEs and RAGE, and increased apoptosis. Insulin and icariside II monotherapy partially restored erectile function and histological changes. However, the combination therapy group showed significantly better erectile parameters, cytological components and biochemistry, similar to those in the normal control group. These results suggest that, although insulin can effectively control glycemic levels, it does not completely alter the pathological changes in erectile tissues. Better efficacy could be expected with tight glycemic control plus the antioxidant icariside II. The proposed combination therapy might have the potential to eliminate metabolic memory by down‐regulating the AGEs‐RAGE‐oxidative stress axis.


Drug Design Development and Therapy | 2015

Icariside II ameliorates diabetic nephropathy in streptozotocin-induced diabetic rats.

Wenjie Tian; Hongen Lei; Ruili Guan; Yongde Xu; Huixi Li; Lin Wang; Bicheng Yang; Zhezhu Gao; Zhongcheng Xin

Purpose To investigate the therapeutic effects and potential mechanisms of icariside II (ICA II) on reversing diabetic nephropathy in streptozotocin (STZ)-induced type I diabetic rats. Methods Newborn male Sprague Dawley rats were labeled with thymidine analog 5-ethynyl-2-deoxyuridine (EdU) for tracking endogenous label retaining progenitor cells (LRCs). At age of 8 weeks, 48 rats were randomly divided into three groups: normal control group (n=16), diabetes mellitus group (DM; n=16), and diabetes mellitus plus ICA II therapy group (DM+ICA II, n=16). Eight weeks induced for diabetes with STZ, rats in DM group and DM+ICA II group were treated with vehicle or ICA II (5 mg/kg/day) for another 8 weeks, respectively. Then, blood creatinine, 24-hour urine protein, blood urea nitrogen, and glycosylated hemoglobin were measured, as well as the expression of von Willebrand factor, malondialdehyde, transforming growth factor-β/drosophila mothers against decapentaplegic protein/connective tissue growth factor (TGF-β/Smad/CTGF) signaling, marker of proliferation Ki-67, and EdU+ LRCs in renal tissues. Results Increased levels of creatinine, 24-hour urine protein, and blood urea nitrogen and remarkably decreased proportion of normal glomeruli and increased proportions of I, IIa, IIb, and III glomeruli were observed in diabetic rats, while ICA II could reverse these changes. Interestingly, ICA II could significantly downregulate the levels of malondialdehyde and TGF-β/Smad/CTGF signaling and increase the expression of von Willebrand factor, Ki-67, and EdU+ LRCs in the kidney. Conclusion ICA II treatment could ameliorate diabetic nephropathy in STZ-induced diabetic rats by increasing endothelial cell contents, downregulating TGF-β/Smad/CTGF signaling pathway and oxidative stress level, and promoting cell proliferation both in kidney cortex and medulla. These beneficial effects appear to be mediated by its antioxidant capacity and recruitment of endogenous EdU+ progenitor cells into the kidney tissue.


International Journal of Molecular Sciences | 2014

Effects of Icariside II on Corpus Cavernosum and Major Pelvic Ganglion Neuropathy in Streptozotocin-Induced Diabetic Rats

Guang-Yi Bai; Feng Zhou; Yu Hui; Yongde Xu; Hongen Lei; Jin-Xian Pu; Zhongcheng Xin

Diabetic erectile dysfunction is associated with penile dorsal nerve bundle neuropathy in the corpus cavernosum and the mechanism is not well understood. We investigated the neuropathy changes in the corpus cavernosum of rats with streptozotocin-induced diabetes and the effects of Icariside II (ICA II) on improving neuropathy. Thirty-six 8-week-old Sprague-Dawley rats were randomly distributed into normal control group, diabetic group and ICA-II treated group. Diabetes was induced by a one-time intraperitoneal injection of streptozotocin (60 mg/kg). Three days later, the diabetic rats were randomly divided into 2 groups including a saline treated placebo group and an ICA II-treated group (5 mg/kg/day, by intragastric administration daily). Twelve weeks later, erectile function was measured by cavernous nerve electrostimulation with real time intracorporal pressure assessment. The penis was harvested for the histological examination (immunofluorescence and immunohistochemical staining) and transmission electron microscopy detecting. Diabetic animals exhibited a decreased density of dorsal nerve bundle in penis. The neurofilament of the dorsal nerve bundle was fragmented in the diabetic rats. There was a decreased expression of nNOS and NGF in the diabetic group. The ICA II group had higher density of dorsal nerve bundle, higher expression of NGF and nNOS in the penis. The pathological change of major pelvic nerve ganglion (including the microstructure by transmission electron microscope and the neurite outgrowth length of major pelvic nerve ganglion tissue cultured in vitro) was greatly attenuated in the ICA II-treated group (p < 0.01). ICA II treatment attenuates the diabetes-related impairment of corpus cavernosum and major pelvic ganglion neuropathy in rats with Streptozotocin-Induced Diabetes.


Journal of Andrology | 2015

Icariside II prevents high-glucose-induced injury on human cavernous endothelial cells through Akt-eNOS signaling pathway

Huixi Li; Yongde Xu; R. Guan; M. Matheu; Hongen Lei; W. Tian; Zhezhu Gao; Guiting Lin; Yinglu Guo; Zhongcheng Xin; Weidong Song

Dysfunction of human cavernous endothelial cells (HCECs) is a common pathological alteration caused by elevated high blood glucose levels associated with diabetes. To explore the protective effects of Icariside II (ICA II) on human cavernous endothelial cells, HCECs were isolated from non‐diabetic human donors, cultured under high glucose (HG) conditions and treated with ICA II. The cell apoptosis and proliferation, expression of Ki67 and Erk1/2, antioxidant capacity, and expression of Akt and eNOS were examined. Changes in cell apoptosis and proliferation indicated that HG treatment inhibited HCEC proliferation with lower percentage of Ki67‐positive cells and lower expression and phosphorylation of Erk1/2. Furthermore, the total antioxidant capacity (T‐AOC) of HCECs was reduced under HG conditions. In line with these findings, both expression and phosphorylation of Akt as well as eNOS was down regulated after HG treatment. The reduction in proliferative capacity, p‐Erk1/2, p‐Akt, and p‐eNOS were partially prevented by ICA II in a concentration‐dependent manner. The protective effects of ICA II rescued HCEC from injury and dysfunction induced by HG in vitro. ICA II may be a candidate for prevention of the development of diabetic erectile dysfunction.


International Journal of Molecular Sciences | 2014

Prophylactic protective effects and its potential mechanisms of icarisideii on streptozotocin induced spermatogenic dysfunction

Yongde Xu; Hongen Lei; Ruili Guan; Zhezhu Gao; Huixi Li; Lin Wang; Yu Hui; Feng Zhou; Zhongcheng Xin

The aim of this study was to investigate the effects of IcarisideII(ICAII) on the prevention of streptozotocin (STZ) induced spermatogenic dysfunction. Forty male Sprague-Dawley rats received intraperitoneal injection of STZ (55 mg/kg) and were equally randomized to gavage feeding of vehicle (the vehicle group) or ICAII (0.5, 1.5 or 4.5 mg/kg/day, respectively). Ten normal rats received vehicle and served as control. Four weeks later, sperm parameters, histopathological changes, testicular lipid peroxidation, antioxidant enzyme activities, and apoptosis index (AI) were evaluated. Results showed that ICAII treatment resulted in a significant recovery of sperm parameters and histopathological changes relative to the vehicle group (p < 0.05). In the vehicle group, antioxidant enzyme activities and the expression of Sertoli cell Vimentin filaments obviously decreased, while lipid peroxidation and AI significantly increased as compared with the control group (p < 0.05). Following ICAII treatment, corrective effects on these items towards normal levels were observed. The results suggested that ICAII has beneficial effect on the preservation of spermatogenic function in the STZ-induced diabetic rats. The mechanisms might be related to its improvement of antioxidant enzyme activities, preservation of the protein expression and apical extensions of Vimentin filaments, and anti-apoptosis capability.


Asian Journal of Andrology | 2016

Therapeutic effects of adipose-derived stem cells-based microtissues on erectile dysfunction in streptozotocin-induced diabetic rats.

Feng Zhou; Yu Hui; Hua Xin; Yongde Xu; Hongen Lei; Bicheng Yang; Ruili Guan; Meng Li; Jianquan Hou; Zhongcheng Xin

This study aimed to explore the therapeutic effects of adipose-derived stem cells (ADSCs)-based microtissues (MTs) on erectile dysfunction (ED) in streptozotocin (STZ)-induced diabetic rats. Fifty-six 8-week-old Sprague-Dawley rats received intraperitoneal injection of STZ (60 mg kg−1 ), and 8 weeks later, the determined diabetic rats randomly received intracavernous (IC) injection of phosphate buffer solution (PBS), ADSCs, or MTs. Another eight normal rats equally got IC injection of PBS. MTs were generated with a hanging drop method, and the injected cells were tracked in ADSC- and MT-injected rats. Four weeks after the treatments, intracavernous pressure (ICP), histopathological changes in corpus cavernosum (CC), and functional proteins were measured. Rat cytokine antibody array was used to detect ADSCs or MTs lysate. The results showed that MTs expressed vascular endothelial growth factor (VEGF), nerve growth factor (NGF), and tumor necrosis factor-stimulated gene-6 (TSG-6). MTs injection had a higher retention than ADSCs injection and MTs treatment improved ICP, neuronal nitric oxide synthase (nNOS) expression, smooth muscle, and endothelial contents in diabetic rats, ameliorated local inflammation in CC better. Thus, our findings demonstrate that IC injection of MTs improves erectile function and histopathological changes in STZ-induced diabetic rats and appears to be more promising than traditional ADSCs. The underlying mechanisms involve increased cell retention accompanied with neuroprotection and anti-inflammatory behaviors of the paracrine factors.

Collaboration


Dive into the Hongen Lei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge