Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruili Guan is active.

Publication


Featured researches published by Ruili Guan.


Biochemical and Biophysical Research Communications | 2013

Aberrant methylation and loss of CADM2 tumor suppressor expression is associated with human renal cell carcinoma tumor progression.

Wei He; Xuesong Li; Shuping Xu; Junkui Ai; Yanqing Gong; Jennifer L. Gregg; Ruili Guan; Wei Qiu; Dianqi Xin; Jeffrey R. Gingrich; Yinglu Guo; Guimin Chang

Cell adhesion molecules (CADMs) comprise a protein family whose functions include maintenance of cell polarity and tumor suppression. In this report, we show that the CADM2 gene is repressed in human clear renal cell carcinoma by DNA promoter hypermethylation and/or loss of heterozygosity. Moreover, the loss of CADM2 expression is associated with a higher tumor pathology stage (p<0.05). The re-expression of CADM2 in the renal cancer cell line 786-O significantly suppressed tumor cell growth in vitro and in mouse xenografts by a G1 phase cell cycle arrest and the induction of apoptosis. Lentivirus-mediated CADM2 expression also significantly suppressed cancer cell anchorage-independent growth and invasion. Furthermore, the inhibition of endogenous CADM2 expression using siRNAs induced a tumorigenic phenotype in polarized non-tumorigenic MDCK cells. Thus, we conclude that CADM2 functions as a novel tumor suppressor and may serve as a potential therapeutic target for human renal cell carcinoma.


The Journal of Sexual Medicine | 2014

Therapeutic Potential of Adipose‐Derived Stem Cells‐Based Micro‐Tissues in a Rat Model of Postprostatectomy Erectile Dysfunction

Yongde Xu; Ruili Guan; Hongen Lei; Huixi Li; Lin Wang; Zhezhu Gao; Weidong Song; Zhongcheng Xin

INTRODUCTION Stem cells (SCs) show significant benefits in the treatment of postprostatectomy erectile dysfunction (ED). However, the low retention rate of the traditional single-cell strategy at the injection sites limits its therapeutic potential. AIM This study aims to investigate the feasibility and mechanism of adipose-derived stem cells (ADSCs)-based micro-tissues (MTs) in the treatment of ED in a rat model of bilateral cavernous nerves (CNs) injury. METHODS ADSCs labeled with 5-ethynyl-2-deoxyuridine (EdU) were used to generate MTs with hanging drop method. 10 Sprague-Dawley (SD) rats underwent sham surgery and intracavernous (IC) injection of phosphate buffer solution (PBS) (the sham group). Another 70 rats underwent bilateral CN crush and were then treated with PBS (n = 10, the crush group), dissociated ADSCs (n = 30, the ADSCs group), and MTs (n = 30, the MTs group), respectively. At day 1, 3, 7, 14 (n = 5), and 28 (n = 10) postsurgery, specimens were harvested for histology. At day 28, 10 rats in each group were examined for erectile function before tissue harvest. MAIN OUTCOME MEASURES Light microscopy of the dynamic aggregation of the MT, immunohistologic examination of the MTs, the retention and distribution of EdU + ADSCs in the corpus cavernosum (CC), and the penis histological analyses of collagen content, Western blot of functional proteins in MTs, intracavernous pressure recording on CN electrostimulation. RESULTS Three-day-old MTs became stable and expressed nerve growth factor, vascular endothelial growth factor, C-X-C chemokine receptor type 4, Wnt5a, and collagen IV. More EdU + ADSCs retained in the CC in the MTs group than that in the ADSCs group. IC injection of MTs resulted in significant restoration of the erectile function and histopathological changes compared with the ADSCs group. CONCLUSION IC-injected MTs resulted in a better restoration of erectile function than traditional single-cell strategy. The underlying mechanisms of recovery appear to involve enhanced cellular retention in the penis and upregulation of some paracrine factors.


Biochemical and Biophysical Research Communications | 2014

Studies on the mechanism of testicular dysfunction in the early stage of a streptozotocin induced diabetic rat model

Yongde Xu; Hongen Lei; Ruili Guan; Zhezhu Gao; Huixi Li; Lin Wang; Weidong Song; Bing Gao; Zhongcheng Xin

Streptozotocin (STZ) induced diabetic model has been widely used to study the effects of diabetes mellitus (DM) on male infertility, but it remains unclear whether the responses in this model are due to hyperglycemia or STZ per se. This study was designed to investigate the mechanism of STZ on testicular dysfunction. In the present study, sperm characteristics, serum testosterone, steroidogenic enzymes (StAR and 3β-HSD), and the vimentin apical extension of sertoli cells decreased significantly in the STZ group compared with those in the normal controls (p<0.05), while Johnsens score, testicular lipid peroxidation, spermatogenic cell apoptosis, and the expressions of NF-κB and Wnt4 significantly increased (p<0.05). Insulin replacement mainly restored the decreased serum testosterone and steroidogenic enzymes, but not other parameters. The results indicated that spermatogenic dysfunction in the early stage of STZ-induced diabetic rats was due to direct STZ cytotoxicity to sertoli cells, which could be regulated by Wnt4 and NF-κB, while steroidogenic dysfunction might be a direct or indirect consequence of insulin deficiency. The results suggested that STZ-induced diabetic model, at least in the early stage, is not suitable to study the diabetes-related spermatogenic dysfunction.


Journal of Cellular and Molecular Medicine | 2015

Antioxidant icariside II combined with insulin restores erectile function in streptozotocin-induced type 1 diabetic rats

Lin Wang; Yongde Xu; Huixi Li; Hongen Lei; Ruili Guan; Zhezhu Gao; Zhongcheng Xin

Erectile dysfunction (ED) worsens in patients with diabetes mellitus (DM) despite good control of blood glucose level with insulin. Recent studies imply that diabetic vascular stresses (e.g. oxidative stress) persist in spite of glucose normalization, which is defined as metabolic memory. Studies suggest that the interaction between advanced glycation end products (AGEs) and their receptor (RAGE) mediates the development of metabolic memory. To investigate the effects of the antioxidant icariside II plus insulin on erectile function in streptozotocin (STZ)‐ induced type 1 diabetic rats. Fifty 8‐week‐old Sprague‐Dawley rats were randomly distributed into five groups: normal control, diabetic, insulin‐treated diabetic, icariside II‐treated diabetic, and insulin plus icariside II‐treated diabetic. Diabetes was induced by a single intraperitoneal injection of STZ. Eight weeks after induction of diabetes, icariside II was administered by gastric lavage once a day (5 mg/kg) for 6 weeks; and 2–6 units of intermediate‐acting insulin were given to maintain normal glycemia for 6 weeks. The main outcome measures were the ratio of intracavernous pressure (ICP) to mean arterial pressure (MAP); histology of penile endothelial cells and smooth muscle cells; neural nitric oxide synthase, AGEs and RAGE expression; malondialdehyde concentration; superoxide dismutase activity; and apoptosis index. Diabetic rats demonstrated a significantly lower ICP/MAP ratio, reduced penile endothelial cells, reduced smooth muscle cells, increased AGEs and RAGE, and increased apoptosis. Insulin and icariside II monotherapy partially restored erectile function and histological changes. However, the combination therapy group showed significantly better erectile parameters, cytological components and biochemistry, similar to those in the normal control group. These results suggest that, although insulin can effectively control glycemic levels, it does not completely alter the pathological changes in erectile tissues. Better efficacy could be expected with tight glycemic control plus the antioxidant icariside II. The proposed combination therapy might have the potential to eliminate metabolic memory by down‐regulating the AGEs‐RAGE‐oxidative stress axis.


Drug Design Development and Therapy | 2015

Icariside II ameliorates diabetic nephropathy in streptozotocin-induced diabetic rats.

Wenjie Tian; Hongen Lei; Ruili Guan; Yongde Xu; Huixi Li; Lin Wang; Bicheng Yang; Zhezhu Gao; Zhongcheng Xin

Purpose To investigate the therapeutic effects and potential mechanisms of icariside II (ICA II) on reversing diabetic nephropathy in streptozotocin (STZ)-induced type I diabetic rats. Methods Newborn male Sprague Dawley rats were labeled with thymidine analog 5-ethynyl-2-deoxyuridine (EdU) for tracking endogenous label retaining progenitor cells (LRCs). At age of 8 weeks, 48 rats were randomly divided into three groups: normal control group (n=16), diabetes mellitus group (DM; n=16), and diabetes mellitus plus ICA II therapy group (DM+ICA II, n=16). Eight weeks induced for diabetes with STZ, rats in DM group and DM+ICA II group were treated with vehicle or ICA II (5 mg/kg/day) for another 8 weeks, respectively. Then, blood creatinine, 24-hour urine protein, blood urea nitrogen, and glycosylated hemoglobin were measured, as well as the expression of von Willebrand factor, malondialdehyde, transforming growth factor-β/drosophila mothers against decapentaplegic protein/connective tissue growth factor (TGF-β/Smad/CTGF) signaling, marker of proliferation Ki-67, and EdU+ LRCs in renal tissues. Results Increased levels of creatinine, 24-hour urine protein, and blood urea nitrogen and remarkably decreased proportion of normal glomeruli and increased proportions of I, IIa, IIb, and III glomeruli were observed in diabetic rats, while ICA II could reverse these changes. Interestingly, ICA II could significantly downregulate the levels of malondialdehyde and TGF-β/Smad/CTGF signaling and increase the expression of von Willebrand factor, Ki-67, and EdU+ LRCs in the kidney. Conclusion ICA II treatment could ameliorate diabetic nephropathy in STZ-induced diabetic rats by increasing endothelial cell contents, downregulating TGF-β/Smad/CTGF signaling pathway and oxidative stress level, and promoting cell proliferation both in kidney cortex and medulla. These beneficial effects appear to be mediated by its antioxidant capacity and recruitment of endogenous EdU+ progenitor cells into the kidney tissue.


Asian Journal of Andrology | 2016

Therapeutic effects of adipose-derived stem cells-based microtissues on erectile dysfunction in streptozotocin-induced diabetic rats.

Feng Zhou; Yu Hui; Hua Xin; Yongde Xu; Hongen Lei; Bicheng Yang; Ruili Guan; Meng Li; Jianquan Hou; Zhongcheng Xin

This study aimed to explore the therapeutic effects of adipose-derived stem cells (ADSCs)-based microtissues (MTs) on erectile dysfunction (ED) in streptozotocin (STZ)-induced diabetic rats. Fifty-six 8-week-old Sprague-Dawley rats received intraperitoneal injection of STZ (60 mg kg−1 ), and 8 weeks later, the determined diabetic rats randomly received intracavernous (IC) injection of phosphate buffer solution (PBS), ADSCs, or MTs. Another eight normal rats equally got IC injection of PBS. MTs were generated with a hanging drop method, and the injected cells were tracked in ADSC- and MT-injected rats. Four weeks after the treatments, intracavernous pressure (ICP), histopathological changes in corpus cavernosum (CC), and functional proteins were measured. Rat cytokine antibody array was used to detect ADSCs or MTs lysate. The results showed that MTs expressed vascular endothelial growth factor (VEGF), nerve growth factor (NGF), and tumor necrosis factor-stimulated gene-6 (TSG-6). MTs injection had a higher retention than ADSCs injection and MTs treatment improved ICP, neuronal nitric oxide synthase (nNOS) expression, smooth muscle, and endothelial contents in diabetic rats, ameliorated local inflammation in CC better. Thus, our findings demonstrate that IC injection of MTs improves erectile function and histopathological changes in STZ-induced diabetic rats and appears to be more promising than traditional ADSCs. The underlying mechanisms involve increased cell retention accompanied with neuroprotection and anti-inflammatory behaviors of the paracrine factors.


Translational Andrology and Urology | 2016

AB101. Therapeutic effect of low intensity pulsed ultrasound in stress urinary incontinence

Bicheng Yang; Hongen Lei; Ruili Guan; Huixi Li; Zhongcheng Xin

Objective Stress urinary incontinence, a major type of urinary incontinence, increases with age and is often developed after partum injury. Low intensity pulsed ultrasound (LIPUS) has been investigated in the treatment of many diseases showing its ability of restoring soft tissue injury. We investigated the therapeutic effect of low intensity pulsed ultrasound in stress urinary incontinence. Methods Thirty-two Sprague Dawley rats in SUI group underwent vaginal distension (VD) and bilateral ovariectomy mimicking partum injury. Eight rats served as mock operation control. Eight rats each in SUI group was treated with low-dosage LESW (0.03 mJ/mm2), medium-dosage LESW (0.06 mJ/mm2), or high-dosage LESW (0.09 mJ/mm2). The rest eight rats served as none-treatment group. For functional study, leak point pressure test (LPP) was performed 2 weeks after the last LESW. Masson trichrome staining was performed to validate the pathological changes. Results The LPP was restored in medium-dosage LESW and high-dosage LESW groups, but not in low-dosage LESW group. More robust striated muscle regeneration was found in these two groups comparing with the none-treatment group. Conclusions LIPUS ameliorate the symptom of SUI via activating striated muscle regeneration.


Urology | 2018

Low Intensity Pulsed Ultrasound Influences the Myogenic Differentiation of Muscle Satellite Cells in a Stress Urinary Incontinence Rat Model

Bicheng Yang; Meng Li; Hongen Lei; Yongde Xu; Huixi Li; Zhezhu Gao; Ruili Guan; Zhongcheng Xin

OBJECTIVE To investigate the therapeutic effect of low intensity pulsed ultrasound (LIPUS) in a stress urinary incontinence (SUI) rat model and its influence on myogenic satellite cells. METHODS Fifty Sprague-Dawley rats underwent vaginal distension and bilateral ovariectomy mimicking partum injury and menopause to construct SUI models, which were further randomized into 100 mW/cm2 LIPUS, 200 mW/cm2 LIPUS, 300 mW/cm2 LIPUS, and none-treatment control subgroups with 10 rats per subgroup. Ten rats served as mock operation control. Leak point pressure and bladder capacity were recorded 1 week after LIPUS treatment. Immunofluorescence staining and Western blot were performed to examine histological changes, myodifferentiation, and signaling pathway. RESULTS Here,we found the leak point pressure and bladder capacity were restored in 200 mW/cm2 LIPUS and 300 mW/cm2 LIPUS groups, but not in 100 mW/cm2 LIPUS group. More robust striated muscle regeneration was observed in 200 mW/cm2 LIPUS group comparing with the SUI none-treatment group. Moreover, we found LIPUS activated the myodifferentiation of muscle satellite cells, which is correlated to p38 phosphorylation level. CONCLUSION LIPUS restored the leak point pressure and bladder capacity, and activated satellite cell myodifferentiation in SUI rat model.


Drug Design Development and Therapy | 2018

Icariside II ameliorates endothelial dysfunction by regulating the MAPK pathway via miR-126/SPRED1 in diabetic human cavernous endothelial cells

Hongen Lei; Huixi Li; Long Tian; Meng Li; Zhongcheng Xin; Xiaodong Zhang; Ruili Guan

Aim The aim of the study was to investigate whether miR-126, a regulator of MAPK signaling via targeting sprouty-related EVH1 domain-containing protein 1 (SPRED1) mRNA, is involved in the process by which icariside II (ICA II) ameliorates endothelial dysfunction in human cavernous endothelial cells (hCECs) exposed to a diabetic-like environment. Materials and methods Primary hCECs were isolated and divided into three groups, normal control, diabetes mellitus (DM), and DM treated with ICA II. The cell proliferation and migration abilities of the hCECs were examined. The expression levels of endothelial-related microRNAs and relative target mRNAs (SPRED1, phosphoinositol-3 kinase regulatory subunit 2, and vascular cell adhesion molecule 1) of miR-126 were determined by real-time PCR. The protein expression of endothelial nitric oxide synthase, receptor for advanced glycation end products, and SPRED1, and MAPK signaling activities was determined by Western blot analysis. In addition, miR-126 agomir and antagomir were used for transfection into hCECs to further testify the association between miR-126 and its targeting mRNA SPRED1. Results hCECs induced with glucose plus advanced glycation end product-BSA showed a significant decrease in endothelial nitric oxide synthase, Ki-67, and miR-126 expression; a downregulated cell migration ability and an increased receptor for advanced glycation end products level. ICA II could partially reverse these changes. SPRED1 mRNA showed a contrary tendency with the miR-126-3p changes. The level of SPRED1 protein increased after the hCECs were induced with glucose plus advanced glycation end product-BSA, and ICA II could rescue its aberrant expression. In addition, the MAPK pathway was downregulated in the hCECs under diabetic conditions, and ICA II could partially enhance its signaling activities. miR-126 was obviously downregulated, and SPRED1 was accordingly upregulated after miR-126 antagomir transfection, while ICA II treatment could recover the expressions of both miR-126 and SPRED1. Moreover, the upregulation of miR-126 and the inhibition of SPRED1 were noticed in the diabetic hCECs by further transfection with miR-126 agomir. Conclusion ICA II could ameliorate endothelial dysfunction by regulating the MAPK pathway via miR-126/SPRED1 in hCECs exposed to a diabetic-like environment, and ICA II might be a protective agent for endothelial function in diabetic ED.


Urology | 2016

Therapeutic Potential of Adipose-derived Stem Cell-based Microtissues in a Rat Model of Stress Urinary Incontinence

Meng Li; Guang-Yong Li; Hongen Lei; Ruili Guan; Bicheng Yang; Zhezhu Gao; Yu Hui; Fubao Chen; Zhongcheng Xin

OBJECTIVE To examine the potential and mechanism of 3-dimensional cultures of adipose-derived stem cells (ADSCs) in the treatment of stress urinary incontinence (SUI) in a rat model simulating menopause combined with preceding childbirth injury. MATERIALS AND METHODS ADSCs were used to generate microtissues (MTs) with a hanging drop method. Forty-eight postpartum Sprague-Dawley rats were developed as SUI models after 4 hours of vagina dilation followed by bilateral ovariectomy. Ten rats that underwent sham ovariectomy without vagina dilation served as the control group. The SUI rats were divided into 3 groups and received urethral injection of phosphate-buffered saline, ADSCs, and MTs. Specimens were harvested for histology examination and ADSCs tracking at days 1, 3, 7, and 28 (n = 3) postinjection. At day 28, the remaining rats were examined for voiding function. Western blot, immunofluorescence, and immunohistochemistry staining were performed to examine histological changes and cytokine expression. RESULTS The voiding function and histopathological structures were better recovered in the MT group than in the ADSC group. Compared with ADSCs, MTs express higher level of vascular endothelial growth factor and TNFα-stimulated gene/protein 6 in vitro, and represented a higher retention rate in vivo. CONCLUSION Urethral injection of MTs better restored voiding function than ADSCs.

Collaboration


Dive into the Ruili Guan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge