Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongguang Chen is active.

Publication


Featured researches published by Hongguang Chen.


Shock | 2012

Molecular hydrogen ameliorates lipopolysaccharide-induced acute lung injury in mice through reducing inflammation and apoptosis.

Keliang Xie; Yonghao Yu; Yi Huang; Lina Zheng; Jipeng Li; Hongguang Chen; Huanzhi Han; Lichao Hou; Gu Gong; Guolin Wang

Acute lung injury (ALI) is still a leading cause of morbidity and mortality in critically ill patients. Recently, our and other studies have found that hydrogen gas (H2) treatment can ameliorate the lung injury induced by sepsis, ventilator, hyperoxia, and ischemia-reperfusion. However, the molecular mechanisms by which H2 ameliorates lung injury remain unclear. In the current study, we investigated whether H2 or hydrogen-rich saline (HS) could exert protective effects in a mouse model of ALI induced by intratracheal administration of lipopolysaccharide (LPS) via inhibiting the nuclear factor &kgr;B (NF-&kgr;B) signaling pathway–mediated inflammation and apoptosis. Two percent of H2 was inhaled for 1 h beginning at 1 and 6 h after LPS administration, respectively. We found that LPS-challenged mice exhibited significant lung injury characterized by the deterioration of histopathology and histologic scores, wet-to-dry weight ratio, and oxygenation index (PaO2/FIO2), as well as total protein in the bronchoalveolar lavage fluid (BALF), which was attenuated by H2 treatment. Hydrogen gas treatment inhibited LPS-induced pulmonary early and late NF-&kgr;B activation. Moreover, H2 treatment dramatically prevented the LPS-induced pulmonary cell apoptosis in LPS-challenged mice, as reflected by the decrease in TUNEL (deoxynucleotidyl transferase dUTP nick end labeling) staining–positive cells and caspase 3 activity. Furthermore, H2 treatment markedly attenuated LPS-induced lung neutrophil recruitment and inflammation, as evidenced by downregulation of lung myeloperoxidase activity, total cells, and polymorphonuclear neutrophils in BALF, as well as proinflammatory cytokines (tumor necrosis factor &agr;, interleukin 1&bgr;, interleukin 6, and high-mobility group box 1) and chemokines (keratinocyte-derived chemokine, macrophage inflammatory protein [MIP] 1&agr;, MIP-2, and monocyte chemoattractant protein 1) in BALF. In addition, i.p. injection of 10 mL/kg hydrogen-rich saline also significantly attenuated the LPS-induced ALI. Collectively, these results demonstrate that molecular hydrogen treatment ameliorates LPS-induced ALI through reducing lung inflammation and apoptosis, which may be associated with the decreased NF-&kgr;B activity. Hydrogen gas may be useful as a novel therapy to treat ALI. ABBREVIATIONS ALI—acute lung injury; ARDS—acute respiratory distress syndrome; BALF—bronchoalveolar lavage fluid; ELISA—enzyme-linked immunosorbent assay; H2—hydrogen gas; HMGB1—high-mobility group box 1; HS—hydrogen-rich saline; i.t.—intratracheal; KC—keratinocyte-derived chemokine; LPS—lipopolysaccharide; MCP-1—monocyte chemoattractant protein 1; MIP-1&agr;—macrophage inflammatory protein 1&agr;; MIP-2—macrophage inflammatory protein 2; MPO—myeloperoxidase; PBS—phosphate-buffered saline; PMNs—polymorphonuclear neutrophils; TUNEL—deoxynucleotidyl transferase dUTP nick end labeling; W/D—wet-to-dry


International Journal of Surgery | 2013

Heme oxygenase-1 mediates the anti-inflammatory effect of molecular hydrogen in LPS-stimulated RAW 264.7 macrophages

Hongguang Chen; Keliang Xie; Huanzhi Han; Weina Wang; Daquan Liu; Guolin Wang; Yonghao Yu

BACKGROUND Molecular hydrogen (H2) as a new medical gas has an anti-inflammatory effect. In the present study, we investigated whether heme oxygenase-1 (HO-1) contributes to the anti-inflammatory effect of H2 in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. METHODS RAW 264.7 macrophages were stimulated by LPS (1 μg/mL) with presence or absence of different concentrations of H2. Cell viability and injury were tested by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay and lactate dehydrogenase (LDH) release, respectively. The cell culture supernatants were collected to measure inflammatory cytokines [TNF-α, IL-1β, HMGB1 (high mobility group box-1) and IL-10] at different time points. Moreover, HO-1 protein expression and activity were tested at different time points. In addition, to further identify the role of HO-1 in this process, zinc protoporphyrin (ZnPP)-IX, an HO-1 inhibitor, was used. RESULTS H2 treatment had no significant influence on cell viability and injury in normally cultured RAW 264.7 macrophages. Moreover, H₂ treatment dose-dependently attenuated the increased levels of pro-inflammatory cytokines (TNF-α, IL-1β, HMGB1), but further increased the level of anti-inflammatory cytokine IL-10 at 3 h, 6 h, 12 h and 24 h after LPS stimulation. Furthermore, H₂ treatment could also dose-dependently increase the HO-1 protein expression and activity at 3 h, 6 h, 12 h and 24 h in LPS-activated macrophages. In addition, blockade of HO-1 activity with ZnPP-IX partly reversed the anti-inflammatory effect of H₂ in LPS-stimulated macrophages. CONCLUSIONS Molecular hydrogen exerts a regulating role in the release of pro- and anti-inflammatory cytokines in LPS-stimulated macrophages, and this effect is at least partly mediated by HO-1 expression and activation.


Brain Research | 2012

Protective effects of hydrogen-rich saline in a rat model of permanent focal cerebral ischemia via reducing oxidative stress and inflammatory cytokines☆

Jianjun Li; Yushu Dong; Hongguang Chen; Huanzhi Han; Yonghao Yu; Guolin Wang; Yi Zeng; Keliang Xie

Hydrogen gas (H(2)) as a new medical gas exerts organ-protective effects through regulating oxidative stress, inflammation and apoptosis. In contrast to H(2), hydrogen-rich saline (HS) may be more suitable for clinical application. The present study was designed to investigate whether HS can offer a neuroprotective effect in a rat model of permanent focal cerebral ischemia and what mechanism(s) underlies the effect. Sprague-Dawley rats were subjected to permanent focal cerebral ischemia induced by permanent middle cerebral artery occlusion (pMCAO). Different doses of HS or normal saline were intraperitoneally administered at 5min after pMCAO or sham operation followed by injections at 6h, 12h and 24h. Here, we found that HS treatment significantly reduced infarct volume and improved neurobehavioral outcomes at 24h, 48h and 72h after pMCAO operation in a dose-dependent manner (P<0.05). Moreover, we found that HS treatment dose-dependently increased the activities of endogenous antioxidant enzymes (SOD and CAT) as well as decreased the levels of oxidative products (8-iso-PGF2α and MDA) and inflammatory cytokines (TNF-α and HMGB1) in injured ipsilateral brain tissues at 6h, 12h and 24h after pMCAO operation (P<0.05). Thus, hydrogen-rich saline dose-dependently exerts a neuroprotective effect against permanent focal cerebral ischemia, and its beneficial effect is at least partially mediated by reducing oxidative stress and inflammation. Molecular hydrogen may be an effective therapeutic strategy for stroke patients.


Shock | 2013

Combination therapy with molecular hydrogen and hyperoxia in a murine model of polymicrobial sepsis.

Keliang Xie; Wenzheng Fu; Weibin Xing; Ailin Li; Hongguang Chen; Huanzhi Han; Yonghao Yu; Guolin Wang

ABSTRACT Sepsis is the most common cause of death in intensive care units. Some studies have found that hyperoxia may be beneficial to sepsis. However, the clinical use of hyperoxia is hindered by concerns that it could exacerbate organ injury by increasing free radical formation. Recently, it has been suggested that molecular hydrogen (H2) at low concentration can exert a therapeutic antioxidant activity and effectively protect against sepsis by reducing oxidative stress. Therefore, we hypothesized that combination therapy with H2 and hyperoxia might afford more potent therapeutic strategies for sepsis. In the present study, we found that inhalation of H2 (2%) or hyperoxia (98%) alone improved the 14-day survival rate of septic mice with moderate cecal ligation and puncture (CLP) from 40% to 80% or 70%, respectively. However, combination therapy with H2 and hyperoxia could increase the 14-day survival rate of moderate CLP mice to 100% and improve the 7-day survival rate of severe CLP mice from 0% to 70%. Moreover, moderate CLP mice showed significant organ damage characterized by the increases in lung myeloperoxidase activity, lung wet-to-dry weight ratio, protein concentration in bronchoalveolar lavage, serum biochemical parameters (alanine aminotransferase, aspartate aminotransferase, creatinine, and blood urea nitrogen), and organ histopathological scores (lung, liver, and kidney), as well as the decrease in PaO2/FIO2 ratio at 24 h, which was attenuated by either H2 or hyperoxia alone. However, combination therapy with H2 and hyperoxia had a more beneficial effect against lung, liver, and kidney damage of moderate or severe CLP mice. Furthermore, we found that the beneficial effect of this combination therapy was associated with the decreased levels of oxidative product (8-iso-prostaglandin F2&agr;), increased activities of antioxidant enzymes (superoxide dismutase and catalase) and anti-inflammatory cytokine (interleukin 10), and reduced levels of proinflammatory cytokines (high-mobility group box 1 and tumor necrosis factor &agr;) in serum and tissues. Therefore, combination therapy with H2 and hyperoxia provides enhanced therapeutic efficacy via both antioxidant and anti-inflammatory mechanisms and might be potentially a clinically feasible approach for sepsis.


Brain Research | 2013

Beneficial effects of hydrogen-rich saline against spinal cord ischemia-reperfusion injury in rabbits

Leshun Zhou; Xiaowu Wang; Weining Xue; Keliang Xie; Yi Huang; Hongguang Chen; Gu Gong; Yi Zeng

Hydrogen-rich saline (HS) is reported to be a new therapeutic agent in ischemia-reperfusion (I/R)-induced organ damage. The present study was designed to investigate the beneficial effects of HS against spinal cord I/R injury and its associated mechanisms. Spinal cord ischemia was induced by infrarenal aortic occlusion for 20min in male New Zealand white rabbits. Different doses of HS were intravenously (i.v.) administered at 5min before or after the beginning of reperfusion. Moreover, the roles of mitochondrial ATP-sensitive potassium channels (mitoKATP), oxidative stress, inflammatory cytokines and apoptosis was assessed. Here, we found that I/R-challenged rabbits exhibited significant spinal cord injury characterized by the decreased numbers of normal motor neurons and hind-limb motor dysfunction, which was significantly ameliorated by 5mL/kg and 10mL/kg HS treatment before reperfusion or 10mL/kg HS treatment after reperfusion. However, the protective effects of HS treatment in spinal cord I/R injury were partially abolished by the selective mitoKATP channel blocker 5-hydroxydecanoate (5-HD). Moreover, we showed that the beneficial effects of 10mL/kg HS treatment against spinal cord I/R damage were associated with the decreased levels of oxidative products [8-iso-prostaglandin F2α (8-iso-PGF2α) and malondialdehyde (MDA)] and pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and high-mobility group box 1 (HMGB1)], as well as the increased activities of antioxidant enzymes [superoxide dismutase (SOD) and catalase (CAT)] in serum at 6h, 12h, 24h, 48h and 72h after reperfusion and in spinal cord at 72h after reperfusion. Furthermore, HS treatment (10mL/kg) reduced caspase-3 activity in the spinal cord of this model. Thus, HS may be an effective therapeutic agent for spinal cord I/R injury via activation of mitoKATP channels as well as reduction of oxidative stress, inflammatory cytokines and apoptosis.


Anesthesia & Analgesia | 2014

Hydrogen-rich Saline Improves Survival and Neurological Outcome After Cardiac Arrest and Cardiopulmonary Resuscitation in Rats

Tingting Huo; Yi Zeng; Xiao-nan Liu; Li Sun; Huanzhi Han; Hongguang Chen; Zhihong Lu; Yi Huang; Huang Nie; Hailong Dong; Keliang Xie; Lize Xiong

BACKGROUND:Sudden cardiac arrest is a leading cause of death worldwide. Three-fourths of cardiac arrest patients die before hospital discharge or experience significant neurological damage. Hydrogen-rich saline, a portable, easily administered, and safe means of delivering hydrogen gas, can exert organ-protective effects through regulating oxidative stress, inflammation, and apoptosis. We designed this study to investigate whether hydrogen-rich saline treatment could improve survival and neurological outcome after cardiac arrest and cardiopulmonary resuscitation, and the mechanism responsible for this effect. METHODS:Sprague-Dawley rats were subjected to 8 minutes of cardiac arrest by asphyxia. Different doses of hydrogen-rich saline or normal saline were administered IV at 1 minute before cardiopulmonary resuscitation, followed by injections at 6 and 12 hours after restoration of spontaneous circulation, respectively. We assessed survival, neurological outcome, oxidative stress, inflammation biomarkers, and apoptosis. RESULTS:Hydrogen-rich saline treatment dose dependently improved survival and neurological function after cardiac arrest/resuscitation. Moreover, hydrogen-rich saline treatment dose dependently ameliorated brain injury after cardiac arrest/resuscitation, which was characterized by the increase of survival neurons in hippocampus CA1, reduction of brain edema in cortex and hippocampus, preservation of blood-brain barrier integrity, as well as the decrease of serum S100&bgr; and neuron-specific enolase. Furthermore, we found that the beneficial effects of hydrogen-rich saline treatment were associated with decreased levels of oxidative products (8-iso-prostaglandin F2&agr; and malondialdehyde) and inflammatory cytokines (tumor necrosis factor-&agr;, interleukin-1&bgr;, and high-mobility group box protein 1), as well as the increased activity of antioxidant enzymes (superoxide dismutase and catalase) in serum and brain tissues. In addition, hydrogen-rich saline treatment reduced caspase-3 activity in cortex and hippocampus after cardiac arrest/resuscitation. CONCLUSIONS:Hydrogen-rich saline treatment improved survival and neurological outcome after cardiac arrest/resuscitation in rats, which was partially mediated by reducing oxidative stress, inflammation, and apoptosis.


Shock | 2015

Combination therapy with nitric oxide and molecular hydrogen in a murine model of acute lung injury.

Huiying Liu; Xiaojun Liang; Dadong Wang; Hongquan Zhang; Lingling Liu; Hongguang Chen; Yuan Li; Qing Duan; Keliang Xie

ABSTRACT Acute lung injury (ALI) is still a leading cause of morbidity and mortality in critically ill patients. Inhaled nitric oxide (NO) has been reported to ameliorate ALI. However, reactive nitrogen species produced by NO can cause lung injury. Because hydrogen gas (H2) is reported to eliminate peroxynitrite, it is expected to reduce the adverse effects of NO. Moreover, we have found that H2 inhalation can attenuate lung injury. Therefore, we hypothesized that combination therapy with NO and H2 might afford more potent therapeutic strategies for ALI. In the present study, a mouse model of ALI was induced by intratracheal administration of lipopolysaccharide (LPS). The animals were treated with inhaled NO (20 ppm), H2 (2%), or NO + H2, starting 5 min after LPS administration for 3 h. We found that LPS-challenged mice exhibited significant lung injury characterized by the deterioration of histopathology and histologic scores, wet-to-dry weight ratio, and oxygenation index (ratio of oxygen tension to inspired oxygen fraction [Pao2/Fio2]), as well as total protein in the bronchoalveolar lavage fluid (BALF), which was attenuated by NO or H2 treatment alone. Combination therapy with NO and H2 had a more beneficial effect with significant interaction between the two. While the nitrotyrosine level in lung tissue was prominent after NO inhalation alone, it was significantly eliminated after breathing a mixture of NO with H2. Furthermore, NO or H2 treatment alone markedly attenuated LPS-induced lung neutrophil recruitment and inflammation, as evidenced by downregulation of lung myeloperoxidase activity, total cells, and polymorphonuclear neutrophils in BALF, as well as proinflammatory cytokines (tumor necrosis factor &agr;, interleukins 1&bgr; and 6, and high-mobility group box 1) and chemokines (keratinocyte-derived chemokine, macrophage inflammatory proteins 1&agr; and 2, and monocyte chemoattractant protein 1) in BALF. Combination therapy with NO and H2 had a more beneficial effect against lung inflammatory response. Moreover, combination therapy with NO and H2 could more effectively inhibit LPS-induced pulmonary early and late nuclear factor &kgr;B activation as well as pulmonary cell apoptosis. In addition, combination treatment with inhaled NO and H2 could also significantly attenuate lung injury in polymicrobial sepsis. Combination therapy with subthreshold concentrations of NO and H2 still had a significantly beneficial effect against lung injury induced by LPS and polymicrobial sepsis. Collectively, these results demonstrate that combination therapy with NO and H2 provides enhanced therapeutic efficacy for ALI.


Journal of Surgical Research | 2015

Hydrogen gas inhibits high-mobility group box 1 release in septic mice by upregulation of heme oxygenase 1

Yuan Li; Keliang Xie; Hongguang Chen; Guolin Wang; Yonghao Yu

BACKGROUND Sepsis is a potentially fatal whole-body inflammation caused by severe infection. Hydrogen gas (H2) is effective for treating sepsis. In this study, we hypothesized that the protective function of H2 in mice with septic lung injury occurred through the activation of heme oxygenase 1 (HO-1) and its upstream regulator nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). MATERIALS AND METHODS Male institute of cancer research mice were subjected to sepsis by cecal ligation and puncture (CLP) with the presence or absence of H2. Beginning at 1 and 6 h after CLP or sham operation, respectively, 2% H2 was inhaled for 1 h. We intraperitoneally injected the HO-1 inhibitor zinc protoporphyrin IX (40 mg/kg) 1 h before CLP. To assess the severity of septic lung injury, we observed the 7-d survival rate, wet/dry weight ratio of lung, lung histopathologic score, oxygenation index, and so forth. Serum and homogenates from the lung, liver, and kidney were acquired for measuring the levels of high-mobility group box 1 (HMGB1) at 6, 12, and 24 h after CLP or sham operation. Furthermore, the protein and messenger RNA expression of Nrf2, HO-1, and HMGB1 was measured at 6, 12, and 24 h. RESULTS Septic mice had a lower survival rate and more severe lung injury compared with the sham group. However, therapy with H2 increased the survival rate and alleviated the severity of lung injury, reduced the HMGB1 level, and increased the HO-1 and Nrf2 levels in septic mice. Moreover, the HO-1 inhibitor zinc protoporphyrin IX significantly eliminated the protective effect of H2 on septic lung injury. CONCLUSIONS H2 plays a significant role in regulating the release of the inflammatory cytokine HMGB1 in septic mice, which is partially mediated through the activation of HO-1 as a downstream molecule of Nrf2.


Shock | 2015

Hydrogen Gas Alleviates the Intestinal Injury Caused by Severe Sepsis in Mice by Increasing the Expression of Heme Oxygenase-1.

Yuan Li; Qi Li; Hongguang Chen; Tao Wang; Lingling Liu; Guolin Wang; Keliang Xie; Yonghao Yu

ABSTRACT Hydrogen gas (H2) has antioxidative, anti-inflammatory, and antiapoptotic effects and may have beneficial effects in severe sepsis. The purpose of this study was to investigate the mechanisms underlying these protective effects. Male Institute for Cancer Research mice were randomized into 6 groups: sham; sham + H2; severe sepsis; severe sepsis + H2; severe sepsis + zinc protoporphyrin IX (ZnPPIX), a heme oxygenase-1 (HO-1) inhibitor; and severe sepsis + H2 + ZnPPIX. Cecal ligation and puncture (CLP) was used to induce sepsis. Mice in the H2 groups received inhaled 2% H2 for 1 h at 1 h and 6 h after CLP or sham operation. Mice in the ZnPPIX groups received 40-mg/kg ZnPPIX by intraperitoneal injection 1 h before CLP. Tin protoporphyrin IX (TinPPIX), another HO-1 inhibitor, was also used in part for this study. Mice in the TinPPIX groups received 50-mg/kg TinPPIX through subcutaneous injection 6 h before CLP. The levels of biochemical markers, oxidative products, inflammatory mediator, the number of intestinal apoptotic cells, and the colony-forming unit numbers in the peritoneal lavage fluid were much higher in the severe sepsis group compared with the sham group. Intestinal injury in animals with severe sepsis was worse than that in animals in the sham group. H2 therapy in the animals with severe sepsis was associated with reduced intestinal injury, decreased numbers of colony-forming unit and apoptotic cells, reduced levels of biochemical markers, oxidative products, and high-mobility group box 1 protein. The protective effects of H2 were reversed by ZnPPIX and TinPPIX. Protein and messenger RNA expressions of HO-1 and nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) in the intestine were increased in the severe sepsis group compared to the sham group, and H2 further increased their expressions in the severe septic mice. Zinc protoporphyrin IX and TinPPIX inhibited the expression of HO-1 protein. Hydrogen has the capacity to protect mice from organ injury in severe sepsis through a mechanism involving HO-1.


International Immunopharmacology | 2015

Molecular hydrogen protects mice against polymicrobial sepsis by ameliorating endothelial dysfunction via an Nrf2/HO-1 signaling pathway ☆

Hongguang Chen; Keliang Xie; Huanzhi Han; Yuan Li; Lingling Liu; Tao Yang; Yonghao Yu

Endothelial injury is a primary cause of sepsis and sepsis-induced organ damage. Heme oxygenase-1 (HO-1) plays an essential role in endothelial cellular defenses against inflammation by activating nuclear factor E2-related factor-2 (Nrf2). We found that molecular hydrogen (H2) exerts an anti-inflammatory effect. Here, we hypothesized that H2 attenuates endothelial injury and inflammation via an Nrf2-mediated HO-1 pathway during sepsis. First, we detected the effects of H2 on cell viability and cell apoptosis in human umbilical vein endothelial cells (HUVECs) stimulated by LPS. Then, we measured cell adhesion molecules and inflammatory factors in HUVECs stimulated by LPS and in a cecal ligation and puncture (CLP)-induced sepsis mouse model. Next, the role of Nrf2/HO-1 was investigated in activated HUVECs, as well as in wild-type and Nrf(-/-) mice with sepsis. We found that both 0.3 mmol/L and 0.6 mmol/L (i.e., saturated) H2-rich media improved cell viability and cell apoptosis in LPS-activated HUVECs and that 0.6mmol/L (i.e., saturated) H2-rich medium exerted an optimal effect. H2 could suppress the release of cell adhesion molecules, such as vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1), and pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β and high-mobility group box 1 protein (HMGB1). Furthermore, H2 could elevate anti-inflammatory cytokine IL-10 levels in LPS-stimulated HUVECs and in lung tissue from CLP mice. H2 enhanced HO-1 expression and activity in vitro and in vivo. HO-1 inhibition reversed the regulatory effects of H2 on cell adhesion molecules and inflammatory factors. H2 regulated endothelial injury and the inflammatory response via Nrf2-mediated HO-1 levels. These results suggest that H2 could suppress excessive inflammatory responses and endothelial injury via an Nrf2/HO-1 pathway.

Collaboration


Dive into the Hongguang Chen's collaboration.

Top Co-Authors

Avatar

Keliang Xie

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar

Yonghao Yu

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar

Guolin Wang

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar

Huanzhi Han

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar

Lingling Liu

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar

Weina Wang

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar

Yi Huang

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yi Zeng

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Li Sun

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yang Yu

Tianjin Medical University General Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge