Hongjun Chen
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hongjun Chen.
Journal of Chemical Physics | 2006
Yuling Wang; Hongjun Chen; Shaojun Dong; Erkang Wang
A sandwich structure consisting of Ag nanoparticles (NPs), p-aminothiophenol (p-ATP) self-assembled monolayers (SAMs), and Ag NPs was fabricated on glass and characterized by surface enhanced Raman scattering (SERS). The SERS spectrum of a p-ATP SAM in such sandwich structure shows that the electromagnetic enhancement is greater than that on Ag NPs assembled on glass. The obtained enhancement factors (EF) on solely one sandwich structure were as large as 6.0 +/- 0.62 x 10(4) and 1.2 +/- 0.62 x 10(7) for the 7a and 3b(b(2)) vibration modes, respectively. The large enhancement effect of p-ATP SAMs is likely a result of plasmon coupling between the two layers of Ag NP (localized surface plasmon) resonance, creating a large localized electromagnetic field at their interface, where p-ATP resides. Moreover, the fact that large EF values (approximately 1.9 +/- 0.7 x 10(4) and 9.4 +/- 0.7 x 10(6) for the 7a- and b(2)-type vibration modes, respectively) were also obtained on a single sandwich structure of Au NPsp-ATP SAMsAg NPs in the visible demonstrates that the electromagnetic coupling does not exist only between Ag NPs but also between Au and Ag NPs. The lower EF values on Au-to-Ag NPs compared to those on Ag-to-Ag NPs demonstrate that the Au-to-Ag coupling must be less effective than the Ag-to-Ag coupling for the induction of SERS in the visible.
Advanced Materials | 2016
Piangjai Peerakiatkhajohn; Jung-Ho Yun; Hongjun Chen; Miaoqiang Lyu; Teera Butburee; Lianzhou Wang
A vertically grown hematite nanosheet film modified with Ag nanoparticles (NPs) and Co-Pi cocatalyst exhibits a remarkably high photocurrent density of 4.68 mA cm(-2) at 1.23 V versus RHE. The Ag NPs leads to significantly improved light harvesting and better charge transfer, while the Co-Pi facilitates a highly stable oxygen evolution process. This photoelectrode design provides more efficient photoelectrochemical systems for solar-energy conversion.
Biosensors and Bioelectronics | 2008
Liu Deng; Fuan Wang; Hongjun Chen; Li Shang; Liang Wang; Tie Wang; Shaojun Dong
A one-compartment glucose/O(2) biofuel cell based on an electrostatic layer-by-layer (LbL) technique on three-dimensional ordered macroporous (3DOM) gold electrode was described. A 3DOM gold electrode was synthesized electrochemically by an inverted colloidal crystal template technique. Then the macroporous gold electrodes were functionalized with Au nanoparticles (AuNPs) and enzyme, glucose dehydrogenase (GDH) or laccase. The (AuNPs/GDH)(n) multilayer modified macroporous gold electrode showed excellent bioelectrocatalytic activity towards glucose. The direct electroreduction towards oxygen was realized at (AuNPs/laccase)(n) films on 3DOM gold electrodes. The maximum power density of the cell with the macroporous film as matrix was 178 microW cm(-2) at 226 mV, which was 16 times larger than that of the biofuel cell with the flat electrode under the same condition. The proposed method is simple and would be applicable to enhance the power output of miniaturized biofuel cell.
Talanta | 2006
Guocheng Yang; Yan Shen; Mingkui Wang; Hongjun Chen; Baifeng Liu; Shaojun Dong
4-Aminobenzoic acid (4-ABA) was covalently grafted on a glassy carbon electrode (GCE) by amine cation radical formation during the electrooxidation process in 0.1M KCl aqueous solution. X-ray photoelectron spectroscopy (XPS) measurement proves the presence of 4-carboxylphenylamine on the GCE. Electron transfer processes of Fe(CN)(6)(3-) in solutions of various pHs at the modified electrode are studied by both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Changing the solution pH would result in the variation of the terminal groups charge state, based on which the surface pK(a) values were estimated. The copper hexacyanoferrate (CuHCF) multilayer films were formed on 4-ABA/GCE prepared in aqueous solution, and which exhibit good electrochemical behavior with high stability.
Beilstein Journal of Nanotechnology | 2014
Hongjun Chen; Lianzhou Wang
Summary To better utilize the sunlight for efficient solar energy conversion, the research on visible-light active photocatalysts has recently attracted a lot of interest. The photosensitization of transition metal oxides is a promising approach for achieving effective visible-light photocatalysis. This review article primarily discusses the recent progress in the realm of a variety of nanostructured photosensitizers such as quantum dots, plasmonic metal nanostructures, and carbon nanostructures for coupling with wide-bandgap transition metal oxides to design better visible-light active photocatalysts. The underlying mechanisms of the composite photocatalysts, e.g., the light-induced charge separation and the subsequent visible-light photocatalytic reaction processes in environmental remediation and solar fuel generation fields, are also introduced. A brief outlook on the nanostructure photosensitization is also given.
Journal of Chemical Physics | 2006
Yuling Wang; Hongjun Chen; Shaojun Dong; Erkang Wang
Surface-enhanced Raman scattering (SERS) activity of silver-gold bimetallic nanostructures (a mean diameter of approximately 100 nm) with hollow interiors was checked using p-aminothiophenol (p-ATP) as a probe molecule at both visible light (514.5 nm) and near-infrared (1064 nm) excitation. Evident Raman peaks of p-ATP were clearly observed, indicating the enhancement Raman scattering activity of the hollow nanostructure to p-ATP. The enhancement factors (EF) at the hollow nanostructures were obtained to be as large as (0.8+/-0.3)x10(6) and (2.7+/-0.5)x10(8) for 7a and 19b (b(2)) vibration mode, respectively, which was 30-40 times larger than that at silver nanoparticles with solid interiors at 514.5 nm excitation. EF values were also obtained at 1064 nm excitation for 7a and b(2)-type vibration mode, which were estimated to be as large as (1.0+/-0.3)x10(6) and (0.9+/-0.2)x10(7), respectively. The additional EF values by a factor of approximately 10 for b(2)-type band were assumed to be due to the chemical effect. Large electromagnetic EF values were presumed to derive from a strong localized plasmas electromagnetic field existed at the hollow nanostructures. SERS activity of hollow nanostructures with another size (a mean diameter of approximately 80 nm) was also investigated and large EF for 7a and b(2)-type band are obtained to be (0.6+/-0.3)x10(6) and (1.7+/-0.7)x10(8), respectively, at 514.5 nm excitation and (0.2+/-0.1)x10(6) and (0.6+/-0.2)x10(7), respectively, at 1064 nm excitation. Although the optical properties of the hollow nanostructures have not yet been well studied, high SERS activities of the nanostructures with hollow interiors have been exhibited in our report.
Angewandte Chemie | 2014
Xu Zong; Jingfeng Han; Brian Seger; Hongjun Chen; Gaoqing Max Lu; Can Li; Lianzhou Wang
Abundant and toxic hydrogen sulfide (H2 S) from industry and nature has been traditionally considered a liability. However, it represents a potential resource if valuable H2 and elemental sulfur can be simultaneously extracted through a H2 S splitting reaction. Herein a photochemical-chemical loop linked by redox couples such as Fe(2+) /Fe(3+) and I(-) /I3 (-) for photoelectrochemical H2 production and H2 S chemical absorption redox reactions are reported. Using functionalized Si as photoelectrodes, H2 S was successfully split into elemental sulfur and H2 with high stability and selectivity under simulated solar light. This new conceptual design will not only provide a possible route for using solar energy to convert H2 S into valuable resources, but also sheds light on some challenging photochemical reactions such as CH4 activation and CO2 reduction.
Scientific Reports | 2015
Hongjun Chen; Gang Liu; Lianzhou Wang
Switched photocurrent direction in photoelectrodes is a very interesting phenomenon and has demonstrated their potentials in important applications including photodiodes, phototransistors, light-driven sensors and biosensors. However, the design and mechanism understanding of such photoelectrodes remain challenging to date. Here we report a new phenomenon of sequence-driven the photocurrent direction on a simple bilayer structure of 5 nm thick Au and 10 nm TiO2 under visible-light irradiation. It is found that when Au layer are deposited as the outer layer on TiO2 coated fluorine doped tin oxide (FTO) substrate (designated as FTO/TiO2/Au), anodic photocurrent is obtained due to the band bending formed at the electrode-electrolyte interface. Interestingly, simply swapping the deposition sequence of Au and TiO2 leads to cathodic photocurrent on FTO/Au/TiO2 electrode. Characterization and calculations on the photoelectrode reveals that the photogenerated electrons can be easily trapped in the energy well formed between the band bending and the Schottky contact, which allows electronic tunnelling through the 1.6 nm thick space charge layer, resulting in a unique anodic to cathodic photocurrent conversion. The understanding of this new phenomenon can be important for designing new generation optoelectronic converting devices in a low-cost and facile manner.
Journal of Physical Chemistry Letters | 2015
Qiong Wang; Miaoqiang Lyu; Meng Zhang; Jung-Ho Yun; Hongjun Chen; Lianzhou Wang
The role of chlorine in the superior electronic property and photovoltaic performance of CH3NH3PbI(3-x)Clx perovskite has attracted recent research attention. Here, we study the impact of chlorine in the perspective of the crystal structure of the perovskite layer, which can provide important understanding of its excellent charge mobility and extended lifetimes. In particular, we find that in the presence of chlorine (PbCl2 or CH3NH3Cl), when CH3NH3PbI3 films are deposited on a TiO2 mesoporous layer instead of a planar TiO2 substrate, a stable cubic phase rather than the commonly observed tetragonal phase is formed in CH3NH3PbI3 perovskite at room temperature. The relative peak intensity of two major facets of cubic CH3NH3PbI3 crystals, (100)C and (200)C facets, can also be easily tuned, depending on the film thickness. Furthermore, compared with pristine CH3NH3PbI3 perovskite films, in the presence of chlorine, CH3NH3PbI3 crystals grown on planar substrates exhibit strong preferred orientations on (110)T and (220)T facets.
Journal of Materials Chemistry | 2015
Piangjai Peerakiatkhajohn; Teera Butburee; Jung-Ho Yun; Hongjun Chen; Ryan M. Richards; Lianzhou Wang
Herein we present a new p–n heterojunction photoelectrode design utilizing Cu2O and TiO2-P25 loaded with only 1 wt% Au@TiO2 plasmonic core–shell structure for the photoelectrochemical (PEC) process. It is found that the photoelectrode with a sandwich-like layer design, i.e. TiO2-1 wt% Au@TiO2/Al2O3/Cu2O, not only promotes light harvesting but also improves charge carrier separation, resulting in drastically improved photocurrent density up to −4.34 mA cm−2 at −0.2 V vs. Ag/AgCl under simulated AM 1.5 solar illumination, ∼20 fold enhancement compared to that obtained from a TiO2-P25/Cu2O photoelectrode. It is also revealed that the photoelectrochemical performance is closely related to the Au nanoparticle size, induced by surface-enhanced scattering of the plasmonic nanoparticles. It should also be noted that these multilayer photoelectrodes also exhibit high stability through rational design of the PEC system to avoid the photocorrosion on Cu2O layers.